{"title":"受精卵激活:被子植物新一代的开始","authors":"Yun Xie, Wei Deng, H. Tian, Xue-yi Zhu","doi":"10.1080/07352689.2022.2082160","DOIUrl":null,"url":null,"abstract":"Abstract In angiosperms, after the egg fuses with the sperm, many structural, physiological, and molecular biological changes occur in the fertilized egg. All of these changes facilitate the conversion of the haploid egg into the diploid zygote, a process known as the maternal-to-zygotic transition (MZT). In the egg, fertilized egg, and zygote, changes occur at each stage under the control of exact spatio-temporal regulation mechanisms. This review focuses on the molecular biological changes that occur during zygote activation in higher plants including the following: maturation and activation of intrinsic parental transcription; zygote genome activation (ZGA), changes in the expression levels of genes from the zygotic genome; the effect of parental genomic dosage; and cellular determination of zygotic asymmetrical division. It is these exact spatio-temporal regulation mechanisms that allow the egg to convert into the zygote, undergo asymmetrical cell division, and initiate embryogenesis. The results of recent studies have shown that the regulation of zygotic division is a complex process occurring in the cell (egg, fertilized egg, and zygote). The results so far have revealed just the tip of the iceberg of zygote activation. More research is required to explore the regulation of zygote activation.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Zygote Activation: The Start of the New Generation in Angiosperms\",\"authors\":\"Yun Xie, Wei Deng, H. Tian, Xue-yi Zhu\",\"doi\":\"10.1080/07352689.2022.2082160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In angiosperms, after the egg fuses with the sperm, many structural, physiological, and molecular biological changes occur in the fertilized egg. All of these changes facilitate the conversion of the haploid egg into the diploid zygote, a process known as the maternal-to-zygotic transition (MZT). In the egg, fertilized egg, and zygote, changes occur at each stage under the control of exact spatio-temporal regulation mechanisms. This review focuses on the molecular biological changes that occur during zygote activation in higher plants including the following: maturation and activation of intrinsic parental transcription; zygote genome activation (ZGA), changes in the expression levels of genes from the zygotic genome; the effect of parental genomic dosage; and cellular determination of zygotic asymmetrical division. It is these exact spatio-temporal regulation mechanisms that allow the egg to convert into the zygote, undergo asymmetrical cell division, and initiate embryogenesis. The results of recent studies have shown that the regulation of zygotic division is a complex process occurring in the cell (egg, fertilized egg, and zygote). The results so far have revealed just the tip of the iceberg of zygote activation. More research is required to explore the regulation of zygote activation.\",\"PeriodicalId\":10854,\"journal\":{\"name\":\"Critical Reviews in Plant Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07352689.2022.2082160\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07352689.2022.2082160","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Zygote Activation: The Start of the New Generation in Angiosperms
Abstract In angiosperms, after the egg fuses with the sperm, many structural, physiological, and molecular biological changes occur in the fertilized egg. All of these changes facilitate the conversion of the haploid egg into the diploid zygote, a process known as the maternal-to-zygotic transition (MZT). In the egg, fertilized egg, and zygote, changes occur at each stage under the control of exact spatio-temporal regulation mechanisms. This review focuses on the molecular biological changes that occur during zygote activation in higher plants including the following: maturation and activation of intrinsic parental transcription; zygote genome activation (ZGA), changes in the expression levels of genes from the zygotic genome; the effect of parental genomic dosage; and cellular determination of zygotic asymmetrical division. It is these exact spatio-temporal regulation mechanisms that allow the egg to convert into the zygote, undergo asymmetrical cell division, and initiate embryogenesis. The results of recent studies have shown that the regulation of zygotic division is a complex process occurring in the cell (egg, fertilized egg, and zygote). The results so far have revealed just the tip of the iceberg of zygote activation. More research is required to explore the regulation of zygote activation.
期刊介绍:
Critical Reviews in Plant Sciences focuses on presenting in-depth and up-to-date reviews of timely and/or cutting-edge subjects in the broad discipline of plant science, ranging from molecular biology/biochemistry through the areas of cell biology, plant pathology and physiology, genetics, classical botany, and ecology, to practical agricultural applications. Articles in the journal provide an up-to-date literature base for researchers and students, pointing the way towards future research needs. The journal is also a significant source of credible, objective information to aid decision makers at all levels.