{"title":"基于鲁棒自组织模糊滑模的水下机器人路径跟踪控制","authors":"G. Lakhekar, L. Waghmare","doi":"10.1080/20464177.2022.2120448","DOIUrl":null,"url":null,"abstract":"A robust self-organising fuzzy sliding mode control law steers autonomous underwater vehicles (AUVs) to track a predefined planar path at a constant speed without temporal specifications. An intelligent methodology has been adopted for path-following control to handle varying parametric uncertainties in vehicle dynamics and also conquers stringent preliminary condition constraints in several path-following control strategies illustrated in the literature. Robust controller design builds on a fusion of sliding mode control theory and fuzzy logic technique with an adaptation mechanism to tune boundary layer width and hitting gain. This novel strategy proposes two distinct tuning procedures: the first method commonly uses absolute error and their derivative as fuzzy input variables in a two-dimensional fuzzy logic rule structure. Herein, skew symmetry property is utilised in rule base structure to derive a single input fuzzy variable based on the signed distance technique, drastically reducing two-dimensional fuzzy logic rules. Since the second method provides substantial reductions in rule inferences through the use of the fuzzy rule's mirror image and the Lyapunov approach for tuning purposes, the resulting guidance control law yields fast convergence of the path-following error trajectory towards zero along with the elimination of chattering problem. Simulation results illustrate the effectiveness and robustness of the proposed control law to achieve favourable tracking performance with a high accuracy.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"131 - 152"},"PeriodicalIF":2.6000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robust self-organising fuzzy sliding mode-based path-following control for autonomous underwater vehicles\",\"authors\":\"G. Lakhekar, L. Waghmare\",\"doi\":\"10.1080/20464177.2022.2120448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust self-organising fuzzy sliding mode control law steers autonomous underwater vehicles (AUVs) to track a predefined planar path at a constant speed without temporal specifications. An intelligent methodology has been adopted for path-following control to handle varying parametric uncertainties in vehicle dynamics and also conquers stringent preliminary condition constraints in several path-following control strategies illustrated in the literature. Robust controller design builds on a fusion of sliding mode control theory and fuzzy logic technique with an adaptation mechanism to tune boundary layer width and hitting gain. This novel strategy proposes two distinct tuning procedures: the first method commonly uses absolute error and their derivative as fuzzy input variables in a two-dimensional fuzzy logic rule structure. Herein, skew symmetry property is utilised in rule base structure to derive a single input fuzzy variable based on the signed distance technique, drastically reducing two-dimensional fuzzy logic rules. Since the second method provides substantial reductions in rule inferences through the use of the fuzzy rule's mirror image and the Lyapunov approach for tuning purposes, the resulting guidance control law yields fast convergence of the path-following error trajectory towards zero along with the elimination of chattering problem. Simulation results illustrate the effectiveness and robustness of the proposed control law to achieve favourable tracking performance with a high accuracy.\",\"PeriodicalId\":50152,\"journal\":{\"name\":\"Journal of Marine Engineering and Technology\",\"volume\":\"22 1\",\"pages\":\"131 - 152\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/20464177.2022.2120448\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/20464177.2022.2120448","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Robust self-organising fuzzy sliding mode-based path-following control for autonomous underwater vehicles
A robust self-organising fuzzy sliding mode control law steers autonomous underwater vehicles (AUVs) to track a predefined planar path at a constant speed without temporal specifications. An intelligent methodology has been adopted for path-following control to handle varying parametric uncertainties in vehicle dynamics and also conquers stringent preliminary condition constraints in several path-following control strategies illustrated in the literature. Robust controller design builds on a fusion of sliding mode control theory and fuzzy logic technique with an adaptation mechanism to tune boundary layer width and hitting gain. This novel strategy proposes two distinct tuning procedures: the first method commonly uses absolute error and their derivative as fuzzy input variables in a two-dimensional fuzzy logic rule structure. Herein, skew symmetry property is utilised in rule base structure to derive a single input fuzzy variable based on the signed distance technique, drastically reducing two-dimensional fuzzy logic rules. Since the second method provides substantial reductions in rule inferences through the use of the fuzzy rule's mirror image and the Lyapunov approach for tuning purposes, the resulting guidance control law yields fast convergence of the path-following error trajectory towards zero along with the elimination of chattering problem. Simulation results illustrate the effectiveness and robustness of the proposed control law to achieve favourable tracking performance with a high accuracy.
期刊介绍:
The Journal of Marine Engineering and Technology will publish papers concerned with scientific and theoretical research applied to all aspects of marine engineering and technology in addition to issues associated with the application of technology in the marine environment. The areas of interest will include:
• Fuel technology and Combustion
• Power and Propulsion Systems
• Noise and vibration
• Offshore and Underwater Technology
• Computing, IT and communication
• Pumping and Pipeline Engineering
• Safety and Environmental Assessment
• Electrical and Electronic Systems and Machines
• Vessel Manoeuvring and Stabilisation
• Tribology and Power Transmission
• Dynamic modelling, System Simulation and Control
• Heat Transfer, Energy Conversion and Use
• Renewable Energy and Sustainability
• Materials and Corrosion
• Heat Engine Development
• Green Shipping
• Hydrography
• Subsea Operations
• Cargo Handling and Containment
• Pollution Reduction
• Navigation
• Vessel Management
• Decommissioning
• Salvage Procedures
• Legislation
• Ship and floating structure design
• Robotics Salvage Procedures
• Structural Integrity Cargo Handling and Containment
• Marine resource and acquisition
• Risk Analysis Robotics
• Maintenance and Inspection Planning Vessel Management
• Marine security
• Risk Analysis
• Legislation
• Underwater Vehicles
• Plant and Equipment
• Structural Integrity
• Installation and Repair
• Plant and Equipment
• Maintenance and Inspection Planning.