在另一个LIL上,对于没有有限方差的变量

IF 0.4 Q4 STATISTICS & PROBABILITY Theory of Probability and Mathematical Statistics Pub Date : 2022-11-08 DOI:10.1090/tpms/1179
R. Pakshirajan, M. Sreehari
{"title":"在另一个LIL上,对于没有有限方差的变量","authors":"R. Pakshirajan, M. Sreehari","doi":"10.1090/tpms/1179","DOIUrl":null,"url":null,"abstract":"<p>In this paper we give a simpler proof of Jain’s [Z. Wahrsch. Verw. Gebiete 59 (1982), no. 1, 117–138] result concerning the Other Law of the Iterated Logarithm for partial sums of a class of independent and identically distributed random variables with infinite variance but in the domain of attraction of a normal law. Jain’s result is less restrictive than ours but depends heavily on the techniques of Donsker and Varadhan in the theory of Large deviations. Our proof involves elementary properties of slowly varying functions. We assume that the distribution of random variables <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X Subscript n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">X_n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfies the condition that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"limit Underscript x right-arrow normal infinity Endscripts StartFraction log upper H left-parenthesis x right-parenthesis Over left-parenthesis log x right-parenthesis Superscript delta Baseline EndFraction equals 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:munder>\n <mml:mo movablelimits=\"true\" form=\"prefix\">lim</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:munder>\n <mml:mfrac>\n <mml:mrow>\n <mml:mi>log</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mi>H</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>log</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mi>x</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n </mml:msup>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lim _{ x\\rightarrow \\infty } \\frac {\\log H(x)}{(\\log x)^\\delta } = 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than delta greater-than 1 slash 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 >\\delta > 1/2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H left-parenthesis x right-parenthesis equals sans-serif upper E left-parenthesis upper X 1 squared upper I left-parenthesis StartAbsoluteValue upper X 1 EndAbsoluteValue less-than-or-equal-to x right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">E</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:msubsup>\n <mml:mi>X</mml:mi>\n <mml:mn>1</mml:mn>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mi>I</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H(x)=\\mathsf E\\left (X_1^2 I(|X_1|\\le x)\\right )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a slowly varying function. The condition above is not very restrictive.</p>","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the other LIL for variables without finite variance\",\"authors\":\"R. Pakshirajan, M. Sreehari\",\"doi\":\"10.1090/tpms/1179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we give a simpler proof of Jain’s [Z. Wahrsch. Verw. Gebiete 59 (1982), no. 1, 117–138] result concerning the Other Law of the Iterated Logarithm for partial sums of a class of independent and identically distributed random variables with infinite variance but in the domain of attraction of a normal law. Jain’s result is less restrictive than ours but depends heavily on the techniques of Donsker and Varadhan in the theory of Large deviations. Our proof involves elementary properties of slowly varying functions. We assume that the distribution of random variables <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X Subscript n\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X_n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> satisfies the condition that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"limit Underscript x right-arrow normal infinity Endscripts StartFraction log upper H left-parenthesis x right-parenthesis Over left-parenthesis log x right-parenthesis Superscript delta Baseline EndFraction equals 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:munder>\\n <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">lim</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:munder>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mi>log</mml:mi>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mi>H</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>log</mml:mi>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mo>=</mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lim _{ x\\\\rightarrow \\\\infty } \\\\frac {\\\\log H(x)}{(\\\\log x)^\\\\delta } = 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for some <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than delta greater-than 1 slash 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0 >\\\\delta > 1/2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H left-parenthesis x right-parenthesis equals sans-serif upper E left-parenthesis upper X 1 squared upper I left-parenthesis StartAbsoluteValue upper X 1 EndAbsoluteValue less-than-or-equal-to x right-parenthesis right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>H</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">E</mml:mi>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:msubsup>\\n <mml:mi>X</mml:mi>\\n <mml:mn>1</mml:mn>\\n <mml:mn>2</mml:mn>\\n </mml:msubsup>\\n <mml:mi>I</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H(x)=\\\\mathsf E\\\\left (X_1^2 I(|X_1|\\\\le x)\\\\right )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a slowly varying function. The condition above is not very restrictive.</p>\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们给出了Jain的[Z.Warsch.Verw.Gebiete 59(1982),no.1117–138]关于一类方差无穷但在正态律吸引域中的独立同分布随机变量的部分和的重对数另一定律的结果的一个更简单的证明。Jain的结果没有我们的结果那么严格,但在很大程度上取决于Donsker和Varadhan在大偏差理论中的技术。我们的证明涉及慢变函数的基本性质。我们假定随机变量XnX_n的分布满足lim→ ∞ 日志⁡ H(x)(对数⁡ x)δ=0 \lim _{x\rightarrow\infty}\frac{\log H(x)}{(\log x)^\delta}=0,其中H(x)=E(x 12 I(|x 1|≤x))H(x)=\mathsf E\left(x_1^2 I(|x_1|\le x)\right)是一个缓慢变化的函数。上述条件限制性不强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the other LIL for variables without finite variance

In this paper we give a simpler proof of Jain’s [Z. Wahrsch. Verw. Gebiete 59 (1982), no. 1, 117–138] result concerning the Other Law of the Iterated Logarithm for partial sums of a class of independent and identically distributed random variables with infinite variance but in the domain of attraction of a normal law. Jain’s result is less restrictive than ours but depends heavily on the techniques of Donsker and Varadhan in the theory of Large deviations. Our proof involves elementary properties of slowly varying functions. We assume that the distribution of random variables X n X_n satisfies the condition that lim x log H ( x ) ( log x ) δ = 0 \lim _{ x\rightarrow \infty } \frac {\log H(x)}{(\log x)^\delta } = 0 for some 0 > δ > 1 / 2 0 >\delta > 1/2 , where H ( x ) = E ( X 1 2 I ( | X 1 | x ) ) H(x)=\mathsf E\left (X_1^2 I(|X_1|\le x)\right ) is a slowly varying function. The condition above is not very restrictive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
期刊最新文献
Bounded in the mean and stationary solutions of second-order difference equations with operator coefficients Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors Full inference for the anisotropic fractional Brownian field The Burgers-type equation driven by a stochastic measure Temporal properties of the stochastic fractional heat equation with spatially-colored noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1