{"title":"通过制造10 m高,自支撑GFRC双曲壳","authors":"T. Henriksen, S. Lo, U. Knaack, P. H. Kirkegaard","doi":"10.1080/17452007.2022.2096557","DOIUrl":null,"url":null,"abstract":"ABSTRACT The main bottleneck during the manufacture of complex geometry thin-walled GFRC structures is the time taken to make the timber or CNC machined moulds for each panel. Complex geometries are comprised of many unique panel forms and the extensive time and high costs of their manufacture often prevents their architectural intent from being fully realised. A novel mould-making process is proposed that uses a state-of-the-art flexible table with computer-controlled actuators to create free-formed geometry, fast-curing, dual-density, polyurethane moulds. This mould-making process was successfully tested by using sprayed GFRC to manufacture 9 different double curved intermediate moulds for a 10 m high GFRC self-supporting, thin-walled hyperbolic shell, with 12 mm thick panels at the base of the structure. The completed structure showcased the effectiveness of the novel mould-making process by reducing the production time from an estimated 100 days to 10 days. The primary outcome was the development and application of a new manufacturing method capable of casting complex geometry thin-walled GFRC panels with good surface quality that was suited to more rapid, cost-effective and automated large-scale production.","PeriodicalId":48523,"journal":{"name":"Architectural Engineering and Design Management","volume":"19 1","pages":"480 - 510"},"PeriodicalIF":2.7000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Developing and testing a novel manufacturing method for complex geometry thin-walled GFRC panels by fabricating a 10 m high, self-supporting GFRC hyperbolic shell\",\"authors\":\"T. Henriksen, S. Lo, U. Knaack, P. H. Kirkegaard\",\"doi\":\"10.1080/17452007.2022.2096557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The main bottleneck during the manufacture of complex geometry thin-walled GFRC structures is the time taken to make the timber or CNC machined moulds for each panel. Complex geometries are comprised of many unique panel forms and the extensive time and high costs of their manufacture often prevents their architectural intent from being fully realised. A novel mould-making process is proposed that uses a state-of-the-art flexible table with computer-controlled actuators to create free-formed geometry, fast-curing, dual-density, polyurethane moulds. This mould-making process was successfully tested by using sprayed GFRC to manufacture 9 different double curved intermediate moulds for a 10 m high GFRC self-supporting, thin-walled hyperbolic shell, with 12 mm thick panels at the base of the structure. The completed structure showcased the effectiveness of the novel mould-making process by reducing the production time from an estimated 100 days to 10 days. The primary outcome was the development and application of a new manufacturing method capable of casting complex geometry thin-walled GFRC panels with good surface quality that was suited to more rapid, cost-effective and automated large-scale production.\",\"PeriodicalId\":48523,\"journal\":{\"name\":\"Architectural Engineering and Design Management\",\"volume\":\"19 1\",\"pages\":\"480 - 510\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architectural Engineering and Design Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17452007.2022.2096557\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architectural Engineering and Design Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17452007.2022.2096557","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Developing and testing a novel manufacturing method for complex geometry thin-walled GFRC panels by fabricating a 10 m high, self-supporting GFRC hyperbolic shell
ABSTRACT The main bottleneck during the manufacture of complex geometry thin-walled GFRC structures is the time taken to make the timber or CNC machined moulds for each panel. Complex geometries are comprised of many unique panel forms and the extensive time and high costs of their manufacture often prevents their architectural intent from being fully realised. A novel mould-making process is proposed that uses a state-of-the-art flexible table with computer-controlled actuators to create free-formed geometry, fast-curing, dual-density, polyurethane moulds. This mould-making process was successfully tested by using sprayed GFRC to manufacture 9 different double curved intermediate moulds for a 10 m high GFRC self-supporting, thin-walled hyperbolic shell, with 12 mm thick panels at the base of the structure. The completed structure showcased the effectiveness of the novel mould-making process by reducing the production time from an estimated 100 days to 10 days. The primary outcome was the development and application of a new manufacturing method capable of casting complex geometry thin-walled GFRC panels with good surface quality that was suited to more rapid, cost-effective and automated large-scale production.
期刊介绍:
Informative and accessible, this publication analyses and discusses the integration of the main stages within the process of design and construction and multidisciplinary collaborative working between the different professionals involved. Ideal for practitioners and academics alike, Architectural Engineering and Design Management examines specific topics on architectural technology, engineering design, building performance and building design management to highlight the interfaces between them and bridge the gap between architectural abstraction and engineering practice. Coverage includes: -Integration of architectural and engineering design -Integration of building design and construction -Building design management; planning and co-ordination, information and knowledge management, vale engineering and value management -Collaborative working and collaborative visualisation in building design -Architectural technology -Sustainable architecture -Building thermal, aural, visual and structural performance -Education and architectural engineering This journal is a valuable resource for professionals and academics (teachers, researchers and students) involved in building design and construction, including the following disciplines: -Architecture -Building Engineering -Building Service Engineering -Building Physics -Design Management and Design Coordination -Facilities Management Published papers will report on both fundamental research dealing with theoretical work and applied research dealing with practical issues and industrial innovations. In this way, readers explore the interaction between technical considerations and management issues.