基于月球风化层选择性激光烧结技术的机器人3D打印月球仿生建筑

Philip F. Yuan, Xinjie Zhou, Hao Wu, Liming Zhang, Lijie Guo, Yun Shi, Zhe Lin, Jinyu Bai, Youhai Yu, Shanglu Yang
{"title":"基于月球风化层选择性激光烧结技术的机器人3D打印月球仿生建筑","authors":"Philip F. Yuan,&nbsp;Xinjie Zhou,&nbsp;Hao Wu,&nbsp;Liming Zhang,&nbsp;Lijie Guo,&nbsp;Yun Shi,&nbsp;Zhe Lin,&nbsp;Jinyu Bai,&nbsp;Youhai Yu,&nbsp;Shanglu Yang","doi":"10.1007/s44223-022-00014-9","DOIUrl":null,"url":null,"abstract":"<div><p>The lunar base is not only an experimental station for extraterrestrial space exploration but also a dwelling for humans performing this exploration. Building a lunar base presents numerous obstacles and requires environmental perception, feedback design, and construction methods. An integrated fabrication process that incorporates design, 3D printing workflow, and construction details to build a bionic, reconfigurable and high-performance lunar base prototype is presented in this paper. The research comprises the study of the lunar regolith 3D printing mechanism, the real-time control of powder laying and compaction procedure, and the development of a 3D printing tool end system. In this paper, many scientific questions regarding in situ fabrication on the lunar surface are raised and addressed with the proposal of a progressive optimization design method, the molding principle, and gradation strategy of lunar soil-polyaryletherketone (PAEK) hybrid powder, and the principle of dual-light field 3D laser printing. The feasibility of the technical strategy proposed in this paper is verified by the presented empirical samples.</p></div>","PeriodicalId":72270,"journal":{"name":"Architectural intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44223-022-00014-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Robotic 3D printed lunar bionic architecture based on lunar regolith selective laser sintering technology\",\"authors\":\"Philip F. Yuan,&nbsp;Xinjie Zhou,&nbsp;Hao Wu,&nbsp;Liming Zhang,&nbsp;Lijie Guo,&nbsp;Yun Shi,&nbsp;Zhe Lin,&nbsp;Jinyu Bai,&nbsp;Youhai Yu,&nbsp;Shanglu Yang\",\"doi\":\"10.1007/s44223-022-00014-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The lunar base is not only an experimental station for extraterrestrial space exploration but also a dwelling for humans performing this exploration. Building a lunar base presents numerous obstacles and requires environmental perception, feedback design, and construction methods. An integrated fabrication process that incorporates design, 3D printing workflow, and construction details to build a bionic, reconfigurable and high-performance lunar base prototype is presented in this paper. The research comprises the study of the lunar regolith 3D printing mechanism, the real-time control of powder laying and compaction procedure, and the development of a 3D printing tool end system. In this paper, many scientific questions regarding in situ fabrication on the lunar surface are raised and addressed with the proposal of a progressive optimization design method, the molding principle, and gradation strategy of lunar soil-polyaryletherketone (PAEK) hybrid powder, and the principle of dual-light field 3D laser printing. The feasibility of the technical strategy proposed in this paper is verified by the presented empirical samples.</p></div>\",\"PeriodicalId\":72270,\"journal\":{\"name\":\"Architectural intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44223-022-00014-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architectural intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44223-022-00014-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architectural intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44223-022-00014-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

月球基地不仅是地外空间探索的实验站,也是人类进行探索的居所。建造月球基地面临诸多障碍,需要环境感知、反馈设计和施工方法。本文介绍了一个集成的制造过程,该过程将设计、3D 打印工作流程和建造细节结合在一起,以建造一个仿生、可重构和高性能的月球基地原型。该研究包括月球碎屑三维打印机理研究、粉末铺设和压实过程的实时控制以及三维打印工具端系统的开发。本文提出了渐进优化设计方法、月壤-聚芳醚酮(PAEK)混合粉末的成型原理和分级策略,以及双光场三维激光打印原理,提出并解决了月面原位制造的诸多科学问题。本文提出的技术策略的可行性通过所展示的实证样本得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robotic 3D printed lunar bionic architecture based on lunar regolith selective laser sintering technology

The lunar base is not only an experimental station for extraterrestrial space exploration but also a dwelling for humans performing this exploration. Building a lunar base presents numerous obstacles and requires environmental perception, feedback design, and construction methods. An integrated fabrication process that incorporates design, 3D printing workflow, and construction details to build a bionic, reconfigurable and high-performance lunar base prototype is presented in this paper. The research comprises the study of the lunar regolith 3D printing mechanism, the real-time control of powder laying and compaction procedure, and the development of a 3D printing tool end system. In this paper, many scientific questions regarding in situ fabrication on the lunar surface are raised and addressed with the proposal of a progressive optimization design method, the molding principle, and gradation strategy of lunar soil-polyaryletherketone (PAEK) hybrid powder, and the principle of dual-light field 3D laser printing. The feasibility of the technical strategy proposed in this paper is verified by the presented empirical samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A review on the mathematical models of thermostatically controlled load The PreDI matrix-a common terminology for offsite construction: definition, verification, and demonstration in environmental impact studies Making the Hypar Up pavilion: (in)efficiencies of upcycling surplus timber products Phygital intelligence Emerging technologies in urban design pedagogy: augmented reality applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1