机器学习的动态系统方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-03-29 DOI:10.1142/s021987622350007x
S. Pourmohammad Azizi, A. Neisy, Sajad Ahmad Waloo
{"title":"机器学习的动态系统方法","authors":"S. Pourmohammad Azizi, A. Neisy, Sajad Ahmad Waloo","doi":"10.1142/s021987622350007x","DOIUrl":null,"url":null,"abstract":"Employing various mathematical tools in machine learning is crucial since it may enhance the learning problem’s efficiency. Dynamic systems are among the most effective tools. In this study, an effort is made to examine a kind of machine learning from the perspective of a dynamic system, i.e., we apply it to learning problems whose input data is a time series. Using the discretization approach and radial basis functions, a new data set is created to adapt the data to a dynamic system framework. A discrete dynamic system is modeled as a matrix that, when multiplied by the data of each time, yields the data of the next time, or, in other words, can be used to predict the future value based on the present data, and the gradient descent technique was used to train this matrix. Eventually, using Python software, the efficacy of this approach relative to other machine learning techniques, such as neural networks, was analyzed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dynamical Systems Approach to Machine Learning\",\"authors\":\"S. Pourmohammad Azizi, A. Neisy, Sajad Ahmad Waloo\",\"doi\":\"10.1142/s021987622350007x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Employing various mathematical tools in machine learning is crucial since it may enhance the learning problem’s efficiency. Dynamic systems are among the most effective tools. In this study, an effort is made to examine a kind of machine learning from the perspective of a dynamic system, i.e., we apply it to learning problems whose input data is a time series. Using the discretization approach and radial basis functions, a new data set is created to adapt the data to a dynamic system framework. A discrete dynamic system is modeled as a matrix that, when multiplied by the data of each time, yields the data of the next time, or, in other words, can be used to predict the future value based on the present data, and the gradient descent technique was used to train this matrix. Eventually, using Python software, the efficacy of this approach relative to other machine learning techniques, such as neural networks, was analyzed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s021987622350007x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s021987622350007x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在机器学习中使用各种数学工具是至关重要的,因为它可以提高学习问题的效率。动态系统是最有效的工具之一。在这项研究中,我们试图从动态系统的角度来研究一种机器学习,即我们将其应用于输入数据为时间序列的学习问题。利用离散化方法和径向基函数,建立了一个新的数据集,使数据适应动态的系统框架。将离散动态系统建模为矩阵,与每次的数据相乘得到下一次的数据,也就是说,可以根据当前数据预测未来的值,并使用梯度下降技术来训练该矩阵。最后,使用Python软件,分析了这种方法相对于其他机器学习技术(如神经网络)的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dynamical Systems Approach to Machine Learning
Employing various mathematical tools in machine learning is crucial since it may enhance the learning problem’s efficiency. Dynamic systems are among the most effective tools. In this study, an effort is made to examine a kind of machine learning from the perspective of a dynamic system, i.e., we apply it to learning problems whose input data is a time series. Using the discretization approach and radial basis functions, a new data set is created to adapt the data to a dynamic system framework. A discrete dynamic system is modeled as a matrix that, when multiplied by the data of each time, yields the data of the next time, or, in other words, can be used to predict the future value based on the present data, and the gradient descent technique was used to train this matrix. Eventually, using Python software, the efficacy of this approach relative to other machine learning techniques, such as neural networks, was analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1