J. Wu, Lingyun Sun, Gautam Srivastava, Vicente García Díaz, Jerry Chun‐wei Lin
{"title":"基于CNN-GA的协同系统构建股票交易专家系统","authors":"J. Wu, Lingyun Sun, Gautam Srivastava, Vicente García Díaz, Jerry Chun‐wei Lin","doi":"10.4018/ijdwm.309957","DOIUrl":null,"url":null,"abstract":"This article uses a new convolutional neural network framework, which has good performance for time series feature extraction and stock price prediction. This method is called the stock sequence array convolutional neural network, or SSACNN for short. SSACNN collects data on leading indicators including historical prices and their futures and options, and uses arrays as the input map of the CNN framework. In the financial market, every number has its logic behind it. Leading indicators such as futures and options can reflect changes in many markets, such as the industry's prosperity. Adding the data set of leading indicators can predict the trend of stock prices well. This study takes the stock markets of the United States and Taiwan as the research objects and uses historical data, futures, and options as data sets to predict the stock prices of these two markets, and then uses genetic algorithms to find trading signals, so as to get a stock trading system. The experimental results show that the stock trading system proposed in this research can help investors obtain certain returns.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Stock Trading Expert System Established by the CNN-GA-Based Collaborative System\",\"authors\":\"J. Wu, Lingyun Sun, Gautam Srivastava, Vicente García Díaz, Jerry Chun‐wei Lin\",\"doi\":\"10.4018/ijdwm.309957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article uses a new convolutional neural network framework, which has good performance for time series feature extraction and stock price prediction. This method is called the stock sequence array convolutional neural network, or SSACNN for short. SSACNN collects data on leading indicators including historical prices and their futures and options, and uses arrays as the input map of the CNN framework. In the financial market, every number has its logic behind it. Leading indicators such as futures and options can reflect changes in many markets, such as the industry's prosperity. Adding the data set of leading indicators can predict the trend of stock prices well. This study takes the stock markets of the United States and Taiwan as the research objects and uses historical data, futures, and options as data sets to predict the stock prices of these two markets, and then uses genetic algorithms to find trading signals, so as to get a stock trading system. The experimental results show that the stock trading system proposed in this research can help investors obtain certain returns.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.309957\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.309957","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Stock Trading Expert System Established by the CNN-GA-Based Collaborative System
This article uses a new convolutional neural network framework, which has good performance for time series feature extraction and stock price prediction. This method is called the stock sequence array convolutional neural network, or SSACNN for short. SSACNN collects data on leading indicators including historical prices and their futures and options, and uses arrays as the input map of the CNN framework. In the financial market, every number has its logic behind it. Leading indicators such as futures and options can reflect changes in many markets, such as the industry's prosperity. Adding the data set of leading indicators can predict the trend of stock prices well. This study takes the stock markets of the United States and Taiwan as the research objects and uses historical data, futures, and options as data sets to predict the stock prices of these two markets, and then uses genetic algorithms to find trading signals, so as to get a stock trading system. The experimental results show that the stock trading system proposed in this research can help investors obtain certain returns.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving