哥斯达黎加克布拉达塞卡流域水文响应的变化是由城市土地覆盖的增加引起的

IF 1.6 3区 环境科学与生态学 Q3 WATER RESOURCES Urban Water Journal Pub Date : 2023-04-27 DOI:10.1080/1573062X.2023.2204877
Ricardo Bonilla Brenes, Martín Morales, R. Oreamuno, J. Hack
{"title":"哥斯达黎加克布拉达塞卡流域水文响应的变化是由城市土地覆盖的增加引起的","authors":"Ricardo Bonilla Brenes, Martín Morales, R. Oreamuno, J. Hack","doi":"10.1080/1573062X.2023.2204877","DOIUrl":null,"url":null,"abstract":"ABSTRACT Urbanization is a global phenomenon which has provoked severe disruptions in hydrological cycles, resulting in flooding problems. While detailed studies exist for the world’s temperate zones, they are few for tropical zones where most of future urbanization may occur and where flooding is already a problem. A tropical watershed in Costa Rica was used to analyze the urban development and the associated hydrological response between 1945 and 2019, based on remotely sensed data and a numerical model. Using a detailed spatial-temporal approach, we found that the watershed’s overall urbanization over the timespan (+64%-points urban-areas) had led to major hydrological challenges (+80% runoff-volume, +220% peak-flow-rate and maximum-specific-discharge, and −25 min time-to-peak). These challenges were then placed in the context of historically reported flood events, providing a basis for spatially-differentiated flood mitigation actions and for guiding future urbanization. The study also provides valuable insights for other tropical regions with the same situation.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"575 - 591"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in the hydrological response within the Quebrada Seca watershed in Costa Rica resulting from an increase of urban land cover\",\"authors\":\"Ricardo Bonilla Brenes, Martín Morales, R. Oreamuno, J. Hack\",\"doi\":\"10.1080/1573062X.2023.2204877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Urbanization is a global phenomenon which has provoked severe disruptions in hydrological cycles, resulting in flooding problems. While detailed studies exist for the world’s temperate zones, they are few for tropical zones where most of future urbanization may occur and where flooding is already a problem. A tropical watershed in Costa Rica was used to analyze the urban development and the associated hydrological response between 1945 and 2019, based on remotely sensed data and a numerical model. Using a detailed spatial-temporal approach, we found that the watershed’s overall urbanization over the timespan (+64%-points urban-areas) had led to major hydrological challenges (+80% runoff-volume, +220% peak-flow-rate and maximum-specific-discharge, and −25 min time-to-peak). These challenges were then placed in the context of historically reported flood events, providing a basis for spatially-differentiated flood mitigation actions and for guiding future urbanization. The study also provides valuable insights for other tropical regions with the same situation.\",\"PeriodicalId\":49392,\"journal\":{\"name\":\"Urban Water Journal\",\"volume\":\"20 1\",\"pages\":\"575 - 591\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Water Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1573062X.2023.2204877\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2204877","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

城市化是一个全球性的现象,它引发了严重的水文循环中断,导致洪水问题。虽然对世界温带地区有详细的研究,但对热带地区的研究很少,而热带地区是未来大部分城市化可能发生的地方,洪水已经是一个问题。基于遥感数据和数值模型,利用哥斯达黎加的一个热带流域分析了1945年至2019年期间的城市发展及其相关水文响应。通过详细的时空分析,我们发现该流域在时间跨度内的整体城市化(+64%的城市地区)导致了重大的水文挑战(+80%的径流量,+220%的峰值流量和最大比流量,以及- 25分钟的峰值时间)。然后将这些挑战置于历史报告的洪水事件背景下,为空间差异化的洪水缓解行动和指导未来的城市化提供基础。该研究还为其他具有相同情况的热带地区提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variation in the hydrological response within the Quebrada Seca watershed in Costa Rica resulting from an increase of urban land cover
ABSTRACT Urbanization is a global phenomenon which has provoked severe disruptions in hydrological cycles, resulting in flooding problems. While detailed studies exist for the world’s temperate zones, they are few for tropical zones where most of future urbanization may occur and where flooding is already a problem. A tropical watershed in Costa Rica was used to analyze the urban development and the associated hydrological response between 1945 and 2019, based on remotely sensed data and a numerical model. Using a detailed spatial-temporal approach, we found that the watershed’s overall urbanization over the timespan (+64%-points urban-areas) had led to major hydrological challenges (+80% runoff-volume, +220% peak-flow-rate and maximum-specific-discharge, and −25 min time-to-peak). These challenges were then placed in the context of historically reported flood events, providing a basis for spatially-differentiated flood mitigation actions and for guiding future urbanization. The study also provides valuable insights for other tropical regions with the same situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Water Journal
Urban Water Journal WATER RESOURCES-
CiteScore
4.40
自引率
11.10%
发文量
101
审稿时长
3 months
期刊介绍: Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management. Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include: network design, optimisation, management, operation and rehabilitation; novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system; demand management and water efficiency, water recycling and source control; stormwater management, urban flood risk quantification and management; monitoring, utilisation and management of urban water bodies including groundwater; water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure); resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing; data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems; decision-support and informatic tools;...
期刊最新文献
A fuzzy group decision-making model for Water Distribution Network rehabilitation Analysis of combined probability and nonprobability samples: A simulation evaluation and application to a teen smoking behavior survey. Environmental contamination by heavy metals and assessing the impact of inhabitant microalgae in bioremediation: a case study of urban water of Yamuna River, India Assessment of the impact of the rise in Lake Victoria water levels on urban flooding using a GIS-based spatial flood modelling approach Indicator-based resilience assessment of stormwater infrastructure network structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1