{"title":"具有局部距离隐私的K-Means聚类","authors":"Mengmeng Yang;Longxia Huang;Chenghua Tang","doi":"10.26599/BDMA.2022.9020050","DOIUrl":null,"url":null,"abstract":"With the development of information technology, a mass of data are generated every day. Collecting and analysing these data help service providers improve their services and gain an advantage in the fierce market competition. K-means clustering has been widely used for cluster analysis in real life. However, these analyses are based on users' data, which disclose users' privacy. Local differential privacy has attracted lots of attention recently due to its strong privacy guarantee and has been applied for clustering analysis. However, existing \n<tex>$K$</tex>\n-means clustering methods with local differential privacy protection cannot get an ideal clustering result due to the large amount of noise introduced to the whole dataset to ensure the privacy guarantee. To solve this problem, we propose a novel method that provides local distance privacy for users who participate in the clustering analysis. Instead of making the users' records in-distinguish from each other in high-dimensional space, we map the user's record into a one-dimensional distance space and make the records in such a distance space not be distinguished from each other. To be specific, we generate a noisy distance first and then synthesize the high-dimensional data record. We propose a Bounded Laplace Method (BLM) and a Cluster Indistinguishable Method (CIM) to sample such a noisy distance, which satisfies the local differential privacy guarantee and local d\n<inf>E</inf>\n-privacy guarantee, respectively. Furthermore, we introduce a way to generate synthetic data records in high-dimensional space. Our experimental evaluation results show that our methods outperform the traditional methods significantly.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 4","pages":"433-442"},"PeriodicalIF":7.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10233239/10233248.pdf","citationCount":"0","resultStr":"{\"title\":\"K-Means Clustering with Local Distance Privacy\",\"authors\":\"Mengmeng Yang;Longxia Huang;Chenghua Tang\",\"doi\":\"10.26599/BDMA.2022.9020050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of information technology, a mass of data are generated every day. Collecting and analysing these data help service providers improve their services and gain an advantage in the fierce market competition. K-means clustering has been widely used for cluster analysis in real life. However, these analyses are based on users' data, which disclose users' privacy. Local differential privacy has attracted lots of attention recently due to its strong privacy guarantee and has been applied for clustering analysis. However, existing \\n<tex>$K$</tex>\\n-means clustering methods with local differential privacy protection cannot get an ideal clustering result due to the large amount of noise introduced to the whole dataset to ensure the privacy guarantee. To solve this problem, we propose a novel method that provides local distance privacy for users who participate in the clustering analysis. Instead of making the users' records in-distinguish from each other in high-dimensional space, we map the user's record into a one-dimensional distance space and make the records in such a distance space not be distinguished from each other. To be specific, we generate a noisy distance first and then synthesize the high-dimensional data record. We propose a Bounded Laplace Method (BLM) and a Cluster Indistinguishable Method (CIM) to sample such a noisy distance, which satisfies the local differential privacy guarantee and local d\\n<inf>E</inf>\\n-privacy guarantee, respectively. Furthermore, we introduce a way to generate synthetic data records in high-dimensional space. Our experimental evaluation results show that our methods outperform the traditional methods significantly.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 4\",\"pages\":\"433-442\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/10233239/10233248.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10233248/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10233248/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
With the development of information technology, a mass of data are generated every day. Collecting and analysing these data help service providers improve their services and gain an advantage in the fierce market competition. K-means clustering has been widely used for cluster analysis in real life. However, these analyses are based on users' data, which disclose users' privacy. Local differential privacy has attracted lots of attention recently due to its strong privacy guarantee and has been applied for clustering analysis. However, existing
$K$
-means clustering methods with local differential privacy protection cannot get an ideal clustering result due to the large amount of noise introduced to the whole dataset to ensure the privacy guarantee. To solve this problem, we propose a novel method that provides local distance privacy for users who participate in the clustering analysis. Instead of making the users' records in-distinguish from each other in high-dimensional space, we map the user's record into a one-dimensional distance space and make the records in such a distance space not be distinguished from each other. To be specific, we generate a noisy distance first and then synthesize the high-dimensional data record. We propose a Bounded Laplace Method (BLM) and a Cluster Indistinguishable Method (CIM) to sample such a noisy distance, which satisfies the local differential privacy guarantee and local d
E
-privacy guarantee, respectively. Furthermore, we introduce a way to generate synthetic data records in high-dimensional space. Our experimental evaluation results show that our methods outperform the traditional methods significantly.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.