{"title":"选用高分子材料增材制造下颌骨解剖结构模型的表面粗糙度参数评价","authors":"P. Turek","doi":"10.14314/polimery.2022.4.4","DOIUrl":null,"url":null,"abstract":"Making a template or implant for surgery is not a simple task. This is especially true of the craniofacial area, which consists of bone tissues with a very complex geometry. Titanium alloys are still used in medicine as implantable materials. However, due to the continuous improvement of mechanical and functional properties, the scope of polymeric materials application in medicine is expanding. Each model used directly or indirectly during a surgical procedure must meet many conditions. One of them is to obtain the appropriate condition of the surface layer, which has a significant impact on the reactions between the applied surgical template or implant and the living organism. Knowledge of the printed models made of polymeric materials surface roughness parameters may allow the targeted modification planning of the surface layer, allowing better application during the procedure. In this study, the research on the comparative analysis of the obtained values of surface roughness parameters of the anatomical structures of the mandible made of selected polymer materials with the use of additive techniques was presented. In the research process, the following materials were used: polylactic acid (PLA), polycarbonate (PC), three photo polyacrylic resins (marked in the manuscript as AR1, AR2 and AR3) and polyamide (PA11). On the basis of them, physical models of the mandible lateral sections were made using 3D printing techniques. Measurements of the model surfaces geometric structure were carried out using a 3D contact profilometer. In the process of determining the surface roughness, the measurement data was filtered in accordance with the ISO 4288 standard. As a final result, selected amplitude parameters and three-dimensional visualization of the surface roughness of the tested models were presented.","PeriodicalId":20319,"journal":{"name":"Polimery","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of surface roughness parameters of anatomical structures models of the mandible made with additive techniques from selected polymeric materials\",\"authors\":\"P. Turek\",\"doi\":\"10.14314/polimery.2022.4.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Making a template or implant for surgery is not a simple task. This is especially true of the craniofacial area, which consists of bone tissues with a very complex geometry. Titanium alloys are still used in medicine as implantable materials. However, due to the continuous improvement of mechanical and functional properties, the scope of polymeric materials application in medicine is expanding. Each model used directly or indirectly during a surgical procedure must meet many conditions. One of them is to obtain the appropriate condition of the surface layer, which has a significant impact on the reactions between the applied surgical template or implant and the living organism. Knowledge of the printed models made of polymeric materials surface roughness parameters may allow the targeted modification planning of the surface layer, allowing better application during the procedure. In this study, the research on the comparative analysis of the obtained values of surface roughness parameters of the anatomical structures of the mandible made of selected polymer materials with the use of additive techniques was presented. In the research process, the following materials were used: polylactic acid (PLA), polycarbonate (PC), three photo polyacrylic resins (marked in the manuscript as AR1, AR2 and AR3) and polyamide (PA11). On the basis of them, physical models of the mandible lateral sections were made using 3D printing techniques. Measurements of the model surfaces geometric structure were carried out using a 3D contact profilometer. In the process of determining the surface roughness, the measurement data was filtered in accordance with the ISO 4288 standard. As a final result, selected amplitude parameters and three-dimensional visualization of the surface roughness of the tested models were presented.\",\"PeriodicalId\":20319,\"journal\":{\"name\":\"Polimery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polimery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.14314/polimery.2022.4.4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14314/polimery.2022.4.4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Evaluation of surface roughness parameters of anatomical structures models of the mandible made with additive techniques from selected polymeric materials
Making a template or implant for surgery is not a simple task. This is especially true of the craniofacial area, which consists of bone tissues with a very complex geometry. Titanium alloys are still used in medicine as implantable materials. However, due to the continuous improvement of mechanical and functional properties, the scope of polymeric materials application in medicine is expanding. Each model used directly or indirectly during a surgical procedure must meet many conditions. One of them is to obtain the appropriate condition of the surface layer, which has a significant impact on the reactions between the applied surgical template or implant and the living organism. Knowledge of the printed models made of polymeric materials surface roughness parameters may allow the targeted modification planning of the surface layer, allowing better application during the procedure. In this study, the research on the comparative analysis of the obtained values of surface roughness parameters of the anatomical structures of the mandible made of selected polymer materials with the use of additive techniques was presented. In the research process, the following materials were used: polylactic acid (PLA), polycarbonate (PC), three photo polyacrylic resins (marked in the manuscript as AR1, AR2 and AR3) and polyamide (PA11). On the basis of them, physical models of the mandible lateral sections were made using 3D printing techniques. Measurements of the model surfaces geometric structure were carried out using a 3D contact profilometer. In the process of determining the surface roughness, the measurement data was filtered in accordance with the ISO 4288 standard. As a final result, selected amplitude parameters and three-dimensional visualization of the surface roughness of the tested models were presented.
期刊介绍:
The "Polimery" journal, of international circulation, is publishing peerreviewed scientific and technical research papers covering polymer science and technology in the field of polymers, rubbers, chemical fibres and paints. The range of topics covered are raw materials, polymer synthesis, processing and applications of polymers. Apart from scientific and technical research papers the monthly includes technical and commercial information such as reports from fairs and exhibitions as well as home, world and technical news.
“Polimery "- an international journal covering the following topics: polymers, rubber, chemical fibres and paints.
The Journal is addressed to scientists, managers and engineering staff of universities, Polish Academy of Sciences, R&D institutions, industry, specializing in polymer chemistry, physical chemistry, technology and processing. “Polimery” publishes original, reviewed research, scientific and technology papers in the field of polymer synthesis, analysis, technology and modification, processing, properties, applications and recycling.