布里斯班克罗斯河铁路罗马街车站洞穴的设计与施工

IF 0.3 Q4 ENGINEERING, GEOLOGICAL Australian Geomechanics Journal Pub Date : 2022-12-01 DOI:10.56295/agj5744
Bernard Shen, Strath Clarke, A. Rogan, P. McCormack
{"title":"布里斯班克罗斯河铁路罗马街车站洞穴的设计与施工","authors":"Bernard Shen, Strath Clarke, A. Rogan, P. McCormack","doi":"10.56295/agj5744","DOIUrl":null,"url":null,"abstract":"The new Roma Street underground railway station in Brisbane is being constructed as part of Cross River Rail’s Tunnel, Stations and Development (TSD) package. The joint venture of CPB Contractors, BAM International Australia, Ghella and UGL (CBGU JV) is building the 5.9km long twin tunnels from the Southern Tunnel Portal near Dutton Park station, beneath the Brisbane River and CBD to the Northern Tunnel Portal in Spring Hill. The Cross River Rail project includes excavation and construction of four new underground stations. Roma Street station comprises a 280m long cavern, five smaller connecting tunnels (adits) and three shafts. The station cavern has an excavated span of up to 24.4m with approximately 15m rock cover. It has been excavated within the Neranleigh-Fernvale Group (NFG) rock mass, which comprises weakly metamorphosed sandstone (meta-greywacke and arenite), phyllite and subordinate quartzite and meta-basalt. The station lies within the regional Normanby Fault Zone, characterised by a major fault up to 20m wide comprising a combination of intact rock, rock breccia and clay gouge. The fault zone encountered during the station cavern excavation required heavier primary support and localised foundation treatment. The initial primary (temporary) support of the cavern and adits comprised rock bolts, cable bolts and a thin synthetic fibre-reinforced shotcrete lining. In some areas a passive shotcrete arch lining was required. Overlying piled footings from an existing busway overpass structure were within a metre of the adits’ excavated profile which necessitated a complex load transfer structure at the surface and verification of pile toe levels during tunnel construction. The cavern permanent lining typically comprises steel fibre-reinforced concrete in the crown, bar reinforced concrete for the sidewalls, and bar and steel fibre-reinforced concrete invert slabs. Bar reinforcement is used in the cavern crown where it intersects the adits. Ground loads for the permanent structure had to consider the influence of future developments. This paper presents some of the challenges of the primary support and permanent lining design of the station cavern and adits. It summarises the as-encountered ground conditions, aspects of the primary support and permanent lining design that were geotechnically challenging and the solutions developed to meet the project requirements.","PeriodicalId":43619,"journal":{"name":"Australian Geomechanics Journal","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design And Construction Of Roma Street Station Cavern, Cross River Rail, Brisbane\",\"authors\":\"Bernard Shen, Strath Clarke, A. Rogan, P. McCormack\",\"doi\":\"10.56295/agj5744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new Roma Street underground railway station in Brisbane is being constructed as part of Cross River Rail’s Tunnel, Stations and Development (TSD) package. The joint venture of CPB Contractors, BAM International Australia, Ghella and UGL (CBGU JV) is building the 5.9km long twin tunnels from the Southern Tunnel Portal near Dutton Park station, beneath the Brisbane River and CBD to the Northern Tunnel Portal in Spring Hill. The Cross River Rail project includes excavation and construction of four new underground stations. Roma Street station comprises a 280m long cavern, five smaller connecting tunnels (adits) and three shafts. The station cavern has an excavated span of up to 24.4m with approximately 15m rock cover. It has been excavated within the Neranleigh-Fernvale Group (NFG) rock mass, which comprises weakly metamorphosed sandstone (meta-greywacke and arenite), phyllite and subordinate quartzite and meta-basalt. The station lies within the regional Normanby Fault Zone, characterised by a major fault up to 20m wide comprising a combination of intact rock, rock breccia and clay gouge. The fault zone encountered during the station cavern excavation required heavier primary support and localised foundation treatment. The initial primary (temporary) support of the cavern and adits comprised rock bolts, cable bolts and a thin synthetic fibre-reinforced shotcrete lining. In some areas a passive shotcrete arch lining was required. Overlying piled footings from an existing busway overpass structure were within a metre of the adits’ excavated profile which necessitated a complex load transfer structure at the surface and verification of pile toe levels during tunnel construction. The cavern permanent lining typically comprises steel fibre-reinforced concrete in the crown, bar reinforced concrete for the sidewalls, and bar and steel fibre-reinforced concrete invert slabs. Bar reinforcement is used in the cavern crown where it intersects the adits. Ground loads for the permanent structure had to consider the influence of future developments. This paper presents some of the challenges of the primary support and permanent lining design of the station cavern and adits. It summarises the as-encountered ground conditions, aspects of the primary support and permanent lining design that were geotechnically challenging and the solutions developed to meet the project requirements.\",\"PeriodicalId\":43619,\"journal\":{\"name\":\"Australian Geomechanics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Geomechanics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56295/agj5744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Geomechanics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56295/agj5744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

布里斯班新的罗马街地铁站是十字河铁路隧道、车站和发展(TSD)计划的一部分。CPB承包商,BAM国际澳大利亚,Ghella和UGL (CBGU JV)的合资企业正在建造5.9公里长的双隧道,从达顿公园站附近的南部隧道入口,布里斯班河和CBD下方到春山的北部隧道入口。跨河铁路项目包括挖掘和建设四个新的地铁站。罗马街车站包括一个280米长的洞穴,五个较小的连接隧道(坑道)和三个竖井。车站洞室的开挖跨度达24.4米,岩石覆盖面积约为15米。它是在Neranleigh-Fernvale群(NFG)岩体中发现的,该岩体由弱变质砂岩(变质灰岩和砂砾岩)、千层岩和次级石英岩和变质玄武岩组成。该站位于诺曼比断裂带内,其特征是一条宽达20米的主要断层,由完整岩石、岩石角砾岩和粘土泥组成。站洞开挖过程中遇到的断层带需要较重的主支护和局部地基处理。洞室和坑道的初始初始(临时)支护由锚杆、锚索锚杆和薄合成纤维增强喷射混凝土衬砌组成。在一些地区,需要被动喷射混凝土拱衬砌。现有巴士道立交桥结构的上覆桩基距隧道开挖轮廓不到一米,因此需要在隧道表面设置复杂的荷载传递结构,并在隧道施工期间验证桩头水平。洞室永久衬砌通常包括顶部的钢纤维增强混凝土,侧壁的钢筋混凝土以及钢筋和钢纤维增强混凝土的倒拱板。在洞室顶部与坑道相交的地方使用钢筋加固。永久结构的地面荷载必须考虑未来发展的影响。本文介绍了车站洞室和坑道的初支护和永久衬砌设计面临的一些挑战。它总结了所遇到的地面条件,主要支撑和永久衬砌设计的各个方面,这些方面在岩土技术上具有挑战性,以及为满足项目要求而开发的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design And Construction Of Roma Street Station Cavern, Cross River Rail, Brisbane
The new Roma Street underground railway station in Brisbane is being constructed as part of Cross River Rail’s Tunnel, Stations and Development (TSD) package. The joint venture of CPB Contractors, BAM International Australia, Ghella and UGL (CBGU JV) is building the 5.9km long twin tunnels from the Southern Tunnel Portal near Dutton Park station, beneath the Brisbane River and CBD to the Northern Tunnel Portal in Spring Hill. The Cross River Rail project includes excavation and construction of four new underground stations. Roma Street station comprises a 280m long cavern, five smaller connecting tunnels (adits) and three shafts. The station cavern has an excavated span of up to 24.4m with approximately 15m rock cover. It has been excavated within the Neranleigh-Fernvale Group (NFG) rock mass, which comprises weakly metamorphosed sandstone (meta-greywacke and arenite), phyllite and subordinate quartzite and meta-basalt. The station lies within the regional Normanby Fault Zone, characterised by a major fault up to 20m wide comprising a combination of intact rock, rock breccia and clay gouge. The fault zone encountered during the station cavern excavation required heavier primary support and localised foundation treatment. The initial primary (temporary) support of the cavern and adits comprised rock bolts, cable bolts and a thin synthetic fibre-reinforced shotcrete lining. In some areas a passive shotcrete arch lining was required. Overlying piled footings from an existing busway overpass structure were within a metre of the adits’ excavated profile which necessitated a complex load transfer structure at the surface and verification of pile toe levels during tunnel construction. The cavern permanent lining typically comprises steel fibre-reinforced concrete in the crown, bar reinforced concrete for the sidewalls, and bar and steel fibre-reinforced concrete invert slabs. Bar reinforcement is used in the cavern crown where it intersects the adits. Ground loads for the permanent structure had to consider the influence of future developments. This paper presents some of the challenges of the primary support and permanent lining design of the station cavern and adits. It summarises the as-encountered ground conditions, aspects of the primary support and permanent lining design that were geotechnically challenging and the solutions developed to meet the project requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Australian Geomechanics Journal
Australian Geomechanics Journal ENGINEERING, GEOLOGICAL-
CiteScore
0.40
自引率
0.00%
发文量
1
期刊最新文献
Can the shrink-swell index be predicted in the Wagga Wagga region based on Atterberg limits? The Queensland geotechnical database Simplified excavation-induced lateral displacement assessment in Sydney area Australian Geomechanics – State of the Journal Assessing the geometry of defect waviness from borehole data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1