高压扭转加工金属杂化材料的合成、微观结构、力学性能及发展趋势

IF 16.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY International Materials Reviews Pub Date : 2021-06-01 DOI:10.1080/09506608.2021.1922807
D. Hernández-Escobar, M. Kawasaki, C. Boehlert
{"title":"高压扭转加工金属杂化材料的合成、微观结构、力学性能及发展趋势","authors":"D. Hernández-Escobar, M. Kawasaki, C. Boehlert","doi":"10.1080/09506608.2021.1922807","DOIUrl":null,"url":null,"abstract":"ABSTRACT The tradeoff between strength and ductility has long been identified as the ‘Achilles’ heel’ of the mechanical properties in engineering applications. Metal hybrids processed by severe plastic deformation (SPD) have gained significant attention in recent years, as they have shown potential for enhancing strength and ductility simultaneously through different heterostructured designs. Among SPD processes, high-pressure torsion (HPT) is considered the most effective in grain refinement and offers excellent versatility for synthesising new materials with a wide variety of experimental setups and processing parameters. This review article describes the current state-of-the-art of metal hybrids processed by HPT, characterised by heterogeneous microstructures (i.e. nanoscale and/or microscale), through a comprehensive study of their synthesis-microstructure-property relationships. The potential of HPT-processed hybrids is highlighted and discussed along with their limitations. Suggestions are provided with the aim to advance current research trends towards future application in high-impact technologies, including the biomedical and microelectronic industries.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"67 1","pages":"231 - 265"},"PeriodicalIF":16.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2021.1922807","citationCount":"8","resultStr":"{\"title\":\"Metal hybrids processed by high-pressure torsion: synthesis, microstructure, mechanical properties and developing trends\",\"authors\":\"D. Hernández-Escobar, M. Kawasaki, C. Boehlert\",\"doi\":\"10.1080/09506608.2021.1922807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The tradeoff between strength and ductility has long been identified as the ‘Achilles’ heel’ of the mechanical properties in engineering applications. Metal hybrids processed by severe plastic deformation (SPD) have gained significant attention in recent years, as they have shown potential for enhancing strength and ductility simultaneously through different heterostructured designs. Among SPD processes, high-pressure torsion (HPT) is considered the most effective in grain refinement and offers excellent versatility for synthesising new materials with a wide variety of experimental setups and processing parameters. This review article describes the current state-of-the-art of metal hybrids processed by HPT, characterised by heterogeneous microstructures (i.e. nanoscale and/or microscale), through a comprehensive study of their synthesis-microstructure-property relationships. The potential of HPT-processed hybrids is highlighted and discussed along with their limitations. Suggestions are provided with the aim to advance current research trends towards future application in high-impact technologies, including the biomedical and microelectronic industries.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"67 1\",\"pages\":\"231 - 265\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09506608.2021.1922807\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2021.1922807\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2021.1922807","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

长期以来,强度和延性之间的权衡一直被认为是工程应用中机械性能的“阿喀琉斯之踵”。强塑性变形(SPD)处理的金属杂化材料近年来备受关注,因为它们显示出通过不同的异质结构设计同时提高强度和延性的潜力。在SPD工艺中,高压扭转(HPT)被认为是最有效的晶粒细化方法,并为合成具有各种实验设置和加工参数的新材料提供了出色的多功能性。本文通过对其合成-微观结构-性能关系的综合研究,介绍了目前HPT加工的具有非均相微观结构(即纳米级和/或微尺度)的金属杂化材料的最新进展。hpt加工的混合动力的潜力被突出和讨论,以及它们的局限性。提出了一些建议,旨在推动当前的研究趋势,以实现未来在高影响力技术中的应用,包括生物医学和微电子工业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metal hybrids processed by high-pressure torsion: synthesis, microstructure, mechanical properties and developing trends
ABSTRACT The tradeoff between strength and ductility has long been identified as the ‘Achilles’ heel’ of the mechanical properties in engineering applications. Metal hybrids processed by severe plastic deformation (SPD) have gained significant attention in recent years, as they have shown potential for enhancing strength and ductility simultaneously through different heterostructured designs. Among SPD processes, high-pressure torsion (HPT) is considered the most effective in grain refinement and offers excellent versatility for synthesising new materials with a wide variety of experimental setups and processing parameters. This review article describes the current state-of-the-art of metal hybrids processed by HPT, characterised by heterogeneous microstructures (i.e. nanoscale and/or microscale), through a comprehensive study of their synthesis-microstructure-property relationships. The potential of HPT-processed hybrids is highlighted and discussed along with their limitations. Suggestions are provided with the aim to advance current research trends towards future application in high-impact technologies, including the biomedical and microelectronic industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Materials Reviews
International Materials Reviews 工程技术-材料科学:综合
CiteScore
28.50
自引率
0.00%
发文量
21
审稿时长
6 months
期刊介绍: International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content. Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information. Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.
期刊最新文献
Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: a review Feedstock preparation, microstructures and mechanical properties for laser-based additive manufacturing of steel matrix composites Statistically equivalent representative volume elements (SERVE) for material behaviour analysis and multiscale modelling Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance Glass-contact refractory of the nuclear waste vitrification melters in the United States: a review of corrosion data and melter life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1