一种新的生成对抗网络在脑肿瘤分割与检测中的应用

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS Computer Science-AGH Pub Date : 2022-09-16 DOI:10.53070/bbd.1172664
Sara Altun Güven, M. F. Talu
{"title":"一种新的生成对抗网络在脑肿瘤分割与检测中的应用","authors":"Sara Altun Güven, M. F. Talu","doi":"10.53070/bbd.1172664","DOIUrl":null,"url":null,"abstract":"Tıbbi görüntülerden beyin tümörünün algılanması araştırmacılar için aktif araştırma alanıdır. Tümör dokusunun çeşitliliği ve tümörün karmaşıklığı süreci zorlu hale getirmektedir. Bu çalışmada üç ayrı beyin tümörü veri kümesi oluşturulmuştur. Oluşturulan veri kümeleri iki boyutludur. Birinci veri kümesi 3 boyutlu görüntülerden 2 boyutlu görüntülere hiçbir değişiklik yapmadan dönüştürülen beyin tümörü veri kümesidir. İkinci veri kümesi birnci veri kümesindeki beyin harici kısımların yok edilmesiyle elde edilmiştir. Üçüncü veri kümesi ise beyin tümörünü daha iyi algılayabilmek için ikinci veri kümesi üzerinde görüntüyü keskinleştirip Gauss Filtresi ekleyerek elde edilmektedir. Buradaki amaç veri kümelerinin eğitim ve test sonuçlarına etkisini gözlemleyebilmektir. Bu çalışmada, beyin tömörü bölütlenirken ve algılanırken yeni Çekişmeli Üretken Ağ önerilmiştir. Önerilen yöntem beyin tümörünü manuel olarak değil otomatik bir şekilde yapabildiği için avantajlıdır. Önerilen yöntem SSimDCL (Supervised Similarity Dual Contrastive Learning) olarak adlandırılmıştır. Önerilen yöntem günümüzde derin öğrenme mimarileri arasında en iyi sonucu veren nnU-Net ile kıyaslanmaktadır. Kıyaslama yapılırken LPIPS ve PSNR yöntemleri tercih edilmiştir. Yapılan deneysel çalışmalar sonucunda önerilen yöntemin veri kümesi iyileştikçe daha iyi sonuçlar verdiği gözlemlenmiştir. nnU-Net yöntemi metriksel olarak daha iyi olmasına rağmen görsel sonuçlar duyusal olarak kıyaslandığında önerilen yöntemin daha iyi olduğu görülmüştür.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using a New Generative Adversarial Network in Brain Tumor Segmentation and Detection\",\"authors\":\"Sara Altun Güven, M. F. Talu\",\"doi\":\"10.53070/bbd.1172664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tıbbi görüntülerden beyin tümörünün algılanması araştırmacılar için aktif araştırma alanıdır. Tümör dokusunun çeşitliliği ve tümörün karmaşıklığı süreci zorlu hale getirmektedir. Bu çalışmada üç ayrı beyin tümörü veri kümesi oluşturulmuştur. Oluşturulan veri kümeleri iki boyutludur. Birinci veri kümesi 3 boyutlu görüntülerden 2 boyutlu görüntülere hiçbir değişiklik yapmadan dönüştürülen beyin tümörü veri kümesidir. İkinci veri kümesi birnci veri kümesindeki beyin harici kısımların yok edilmesiyle elde edilmiştir. Üçüncü veri kümesi ise beyin tümörünü daha iyi algılayabilmek için ikinci veri kümesi üzerinde görüntüyü keskinleştirip Gauss Filtresi ekleyerek elde edilmektedir. Buradaki amaç veri kümelerinin eğitim ve test sonuçlarına etkisini gözlemleyebilmektir. Bu çalışmada, beyin tömörü bölütlenirken ve algılanırken yeni Çekişmeli Üretken Ağ önerilmiştir. Önerilen yöntem beyin tümörünü manuel olarak değil otomatik bir şekilde yapabildiği için avantajlıdır. Önerilen yöntem SSimDCL (Supervised Similarity Dual Contrastive Learning) olarak adlandırılmıştır. Önerilen yöntem günümüzde derin öğrenme mimarileri arasında en iyi sonucu veren nnU-Net ile kıyaslanmaktadır. Kıyaslama yapılırken LPIPS ve PSNR yöntemleri tercih edilmiştir. Yapılan deneysel çalışmalar sonucunda önerilen yöntemin veri kümesi iyileştikçe daha iyi sonuçlar verdiği gözlemlenmiştir. nnU-Net yöntemi metriksel olarak daha iyi olmasına rağmen görsel sonuçlar duyusal olarak kıyaslandığında önerilen yöntemin daha iyi olduğu görülmüştür.\",\"PeriodicalId\":41917,\"journal\":{\"name\":\"Computer Science-AGH\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science-AGH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53070/bbd.1172664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science-AGH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53070/bbd.1172664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

从医学图像来看,脑肿瘤是研究人员的一个活跃研究领域。肿瘤组织的复杂性和肿瘤的复杂性是困难的。在这项研究中,创建了三个独立的脑肿瘤数据集。Oluşturulan veri kümeleri iki boyutludur。第一数据集是已经被转换为3D图像中的2D图像而没有任何改变的脑肿瘤数据集。第二个数据集是通过删除第一个数据集的大脑外部而获得的。第三个数据集是在第二个数据集上剪切图像,以更好地了解脑肿瘤,并通过添加高斯滤波器来获得它。这里的目标是监测数据框的教育和测试结果的影响。在这项研究中,当对脑肿瘤进行分割和理解时,提出了创建一种新化合物的网络。建议的方法是手动进行脑瘤切除,而不是自动进行。所提出的方法被称为SSimDCL(监督相似性双重对比学习)。最好的结果来自nnU-Net,它以所提出的方式为当今的深度学习架构师提供了支持。比较首选LPIPS和PSNR方法。Yapılan deneyselçalışmalar sonucundaönerilen yöntemin veri kümesi iyileştikçe daha iyi sonuçlar verdiği gözlemlenmiştir。尽管nnU-Net方法在度量上更好,但相比之下,视觉结果更乐观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using a New Generative Adversarial Network in Brain Tumor Segmentation and Detection
Tıbbi görüntülerden beyin tümörünün algılanması araştırmacılar için aktif araştırma alanıdır. Tümör dokusunun çeşitliliği ve tümörün karmaşıklığı süreci zorlu hale getirmektedir. Bu çalışmada üç ayrı beyin tümörü veri kümesi oluşturulmuştur. Oluşturulan veri kümeleri iki boyutludur. Birinci veri kümesi 3 boyutlu görüntülerden 2 boyutlu görüntülere hiçbir değişiklik yapmadan dönüştürülen beyin tümörü veri kümesidir. İkinci veri kümesi birnci veri kümesindeki beyin harici kısımların yok edilmesiyle elde edilmiştir. Üçüncü veri kümesi ise beyin tümörünü daha iyi algılayabilmek için ikinci veri kümesi üzerinde görüntüyü keskinleştirip Gauss Filtresi ekleyerek elde edilmektedir. Buradaki amaç veri kümelerinin eğitim ve test sonuçlarına etkisini gözlemleyebilmektir. Bu çalışmada, beyin tömörü bölütlenirken ve algılanırken yeni Çekişmeli Üretken Ağ önerilmiştir. Önerilen yöntem beyin tümörünü manuel olarak değil otomatik bir şekilde yapabildiği için avantajlıdır. Önerilen yöntem SSimDCL (Supervised Similarity Dual Contrastive Learning) olarak adlandırılmıştır. Önerilen yöntem günümüzde derin öğrenme mimarileri arasında en iyi sonucu veren nnU-Net ile kıyaslanmaktadır. Kıyaslama yapılırken LPIPS ve PSNR yöntemleri tercih edilmiştir. Yapılan deneysel çalışmalar sonucunda önerilen yöntemin veri kümesi iyileştikçe daha iyi sonuçlar verdiği gözlemlenmiştir. nnU-Net yöntemi metriksel olarak daha iyi olmasına rağmen görsel sonuçlar duyusal olarak kıyaslandığında önerilen yöntemin daha iyi olduğu görülmüştür.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Science-AGH
Computer Science-AGH COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.40
自引率
0.00%
发文量
18
审稿时长
20 weeks
期刊最新文献
A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm Database Replication for Disconnected Operations with Quasi Real-Time Synchronization Hybrid Variable Neighborhood Search for Solving School Bus-Driver Problem with Resource Constraints A Survey on Multi-Objective Based Parameter Optimization for Deep Learning Melanoma Skin Cancer and Nevus Mole Classification using Intensity Value Estimation with Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1