I. Langmore, M. Dikovsky, S. Geraedts, P. Norgaard, R. V. Behren
{"title":"反问题中的哈密顿蒙特卡罗病态和多模态。","authors":"I. Langmore, M. Dikovsky, S. Geraedts, P. Norgaard, R. V. Behren","doi":"10.1615/int.j.uncertaintyquantification.2022038478","DOIUrl":null,"url":null,"abstract":"The Hamiltonian Monte Carlo (HMC) method allows sampling from continuous densities. Favorable scaling with dimension has led to wide adoption of HMC by the statistics community. Modern auto-differentiating software should allow more widespread usage in Bayesian inverse problems. This paper analyzes two major difficulties encoun-tered using HMC for inverse problems: poor conditioning and multi-modality. Novel results on preconditioning and replica exchange Monte Carlo parameter selection are presented in the context of spectroscopy. Recommendations are given for the number of integration steps as well as step size, preconditioner type and fitting, annealing form and schedule. These recommendations are analyzed rigorously in the Gaussian case, and shown to generalize in a fusion plasma reconstruction.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hamiltonian Monte Carlo in Inverse Problems; Ill-Conditioning and Multi-Modality.\",\"authors\":\"I. Langmore, M. Dikovsky, S. Geraedts, P. Norgaard, R. V. Behren\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2022038478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hamiltonian Monte Carlo (HMC) method allows sampling from continuous densities. Favorable scaling with dimension has led to wide adoption of HMC by the statistics community. Modern auto-differentiating software should allow more widespread usage in Bayesian inverse problems. This paper analyzes two major difficulties encoun-tered using HMC for inverse problems: poor conditioning and multi-modality. Novel results on preconditioning and replica exchange Monte Carlo parameter selection are presented in the context of spectroscopy. Recommendations are given for the number of integration steps as well as step size, preconditioner type and fitting, annealing form and schedule. These recommendations are analyzed rigorously in the Gaussian case, and shown to generalize in a fusion plasma reconstruction.\",\"PeriodicalId\":48814,\"journal\":{\"name\":\"International Journal for Uncertainty Quantification\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2022038478\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2022038478","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Hamiltonian Monte Carlo in Inverse Problems; Ill-Conditioning and Multi-Modality.
The Hamiltonian Monte Carlo (HMC) method allows sampling from continuous densities. Favorable scaling with dimension has led to wide adoption of HMC by the statistics community. Modern auto-differentiating software should allow more widespread usage in Bayesian inverse problems. This paper analyzes two major difficulties encoun-tered using HMC for inverse problems: poor conditioning and multi-modality. Novel results on preconditioning and replica exchange Monte Carlo parameter selection are presented in the context of spectroscopy. Recommendations are given for the number of integration steps as well as step size, preconditioner type and fitting, annealing form and schedule. These recommendations are analyzed rigorously in the Gaussian case, and shown to generalize in a fusion plasma reconstruction.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.