基于W.K.B.的多层球形“地球-电离层”模型中的ELF-EM场

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysics and Engineering Pub Date : 2023-03-09 DOI:10.1093/jge/gxad017
Ya Gao, Q. Di, C. Fu, Yilang Zhang
{"title":"基于W.K.B.的多层球形“地球-电离层”模型中的ELF-EM场","authors":"Ya Gao, Q. Di, C. Fu, Yilang Zhang","doi":"10.1093/jge/gxad017","DOIUrl":null,"url":null,"abstract":"\n With a high signal-to-noise ratio and a great depth of exploration, the wireless electromagnetic method (WEM) has wide applications in the exploration of deep mineral resources and oil and gas reservoirs. Extremely low-frequency electromagnetic (ELF) waves emitted from a horizontal antenna are used to achieve synchronous acquisition for different receivers of multi-coverage information in a global region. However, previous research based on a planar model ignored the curvature of the Earth. This work focuses on the electromagnetic fields (EM fields) in the model of a spherical “Earth ionosphere” to extend the coverage of WEM. By transferring the EM fields from a vertical electric dipole (VED) as well as a vertical magnetic dipole (VMD) in the multi-layered medium of the Earth, we obtain the formulae for the EM fields emitted by a horizontal electric dipole (HED) by using a reciprocity theorem. The correctness of the proposed method is verified by comparing it with the approximate analytical formula and previous work. Based on the above results, we have studied the propagation and frequency characteristics of electromagnetic fields in a spherical waveguide consisting of the ionosphere and earth. The results show that the electromagnetic fields under the spherical model produce interference effects that are different from those of the planar model. The electromagnetic response of the layered Earth was then discussed, and its potential as an electromagnetic technique for exploring the deep Earth was demonstrated.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ELF-EM fields in the multilayer spherical “earth-ionosphere” model based on W.K.B.\",\"authors\":\"Ya Gao, Q. Di, C. Fu, Yilang Zhang\",\"doi\":\"10.1093/jge/gxad017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With a high signal-to-noise ratio and a great depth of exploration, the wireless electromagnetic method (WEM) has wide applications in the exploration of deep mineral resources and oil and gas reservoirs. Extremely low-frequency electromagnetic (ELF) waves emitted from a horizontal antenna are used to achieve synchronous acquisition for different receivers of multi-coverage information in a global region. However, previous research based on a planar model ignored the curvature of the Earth. This work focuses on the electromagnetic fields (EM fields) in the model of a spherical “Earth ionosphere” to extend the coverage of WEM. By transferring the EM fields from a vertical electric dipole (VED) as well as a vertical magnetic dipole (VMD) in the multi-layered medium of the Earth, we obtain the formulae for the EM fields emitted by a horizontal electric dipole (HED) by using a reciprocity theorem. The correctness of the proposed method is verified by comparing it with the approximate analytical formula and previous work. Based on the above results, we have studied the propagation and frequency characteristics of electromagnetic fields in a spherical waveguide consisting of the ionosphere and earth. The results show that the electromagnetic fields under the spherical model produce interference effects that are different from those of the planar model. The electromagnetic response of the layered Earth was then discussed, and its potential as an electromagnetic technique for exploring the deep Earth was demonstrated.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad017\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad017","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

无线电磁法具有较高的信噪比和较大的勘探深度,在深部矿产资源和油气藏勘探中有着广泛的应用。从水平天线发射的极低频电磁(ELF)波用于实现全球区域中多覆盖信息的不同接收器的同步捕获。然而,以前基于平面模型的研究忽略了地球的曲率。这项工作的重点是球面“地球电离层”模型中的电磁场(EM场),以扩大WEM的覆盖范围。通过在地球多层介质中传输垂直电偶极子(VED)和垂直磁偶极子(VMD)的EM场,利用互易定理得到了水平电偶极子(HED)发射EM场的公式。通过与近似解析公式和前人工作的比较,验证了该方法的正确性。基于上述结果,我们研究了由电离层和地球组成的球形波导中电磁场的传播和频率特性。结果表明,球面模型下的电磁场会产生不同于平面模型的干扰效应。然后讨论了层状地球的电磁响应,并展示了其作为探测地球深处的电磁技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ELF-EM fields in the multilayer spherical “earth-ionosphere” model based on W.K.B.
With a high signal-to-noise ratio and a great depth of exploration, the wireless electromagnetic method (WEM) has wide applications in the exploration of deep mineral resources and oil and gas reservoirs. Extremely low-frequency electromagnetic (ELF) waves emitted from a horizontal antenna are used to achieve synchronous acquisition for different receivers of multi-coverage information in a global region. However, previous research based on a planar model ignored the curvature of the Earth. This work focuses on the electromagnetic fields (EM fields) in the model of a spherical “Earth ionosphere” to extend the coverage of WEM. By transferring the EM fields from a vertical electric dipole (VED) as well as a vertical magnetic dipole (VMD) in the multi-layered medium of the Earth, we obtain the formulae for the EM fields emitted by a horizontal electric dipole (HED) by using a reciprocity theorem. The correctness of the proposed method is verified by comparing it with the approximate analytical formula and previous work. Based on the above results, we have studied the propagation and frequency characteristics of electromagnetic fields in a spherical waveguide consisting of the ionosphere and earth. The results show that the electromagnetic fields under the spherical model produce interference effects that are different from those of the planar model. The electromagnetic response of the layered Earth was then discussed, and its potential as an electromagnetic technique for exploring the deep Earth was demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
期刊最新文献
Quasi-2D inversion of surface large fixed-loop transient electromagnetic sounding data Automatic thrust/fault and edge location with gravity data across the Shillong plateau and Mikir hill complex in northeastern India using the most positive and most negative curvature interpretation High-order Azimuth Coherent Imaging for Microseismic Location Characteristic analysis and data comparative of linear and nonlinear low frequency sweep in vibroseis Viscoacoustic least squares reverse-time migration using L1-2 norm sparsity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1