金属-碳酸盐体系中地幔-板相互作用的实验模型、金刚石的结晶条件和指示特征

IF 1.2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Russian Geology and Geophysics Pub Date : 2023-05-09 DOI:10.2113/rgg20234559
Y. Palyanov, Y. Bataleva, Yury M. Borzdov, I. Kupriyanov, D. V. Nechaev
{"title":"金属-碳酸盐体系中地幔-板相互作用的实验模型、金刚石的结晶条件和指示特征","authors":"Y. Palyanov, Y. Bataleva, Yury M. Borzdov, I. Kupriyanov, D. V. Nechaev","doi":"10.2113/rgg20234559","DOIUrl":null,"url":null,"abstract":"\n —Experimental studies aimed at determining the conditions for the formation of diamond and graphite as a result of the redox interaction of reduced mantle rocks and oxidized rocks of the slab in a wide temperature range, including the conditions of both “cold” and “hot” subduction, were carried out on a “split-sphere” multianvil high-pressure apparatus (BARS) in the (Fe,Ni)–(Mg,Ca)CO3 system, at 6.3 GPa and 800–1550 °C for 35–105 h, using the “sandwich” assembly. We have established that the interaction of Fe,Ni metal and carbonate is due to the creation and propagation of a redox front, at rates from 1.3 (800 °C) to 118 μm/h (1550 °C). At T < 1200 °С, this interaction leads to the formation of alternating reaction zones (from the reduced center to the oxidized periphery): metal → metal + wüstite/magnesiowüstite → magnesiowüstite + graphite ± Mg,Fe,Ca carbonates → magnesite + aragonite. In this case, in the reduced part of the samples, the formation of a Ni,Fe metal phase strongly enriched in Ni (up to 65–70 wt.% vs. the initial 10 wt.%) was recorded. At higher temperatures, the formation of Fe,Ni metal–carbon (≥1200 °C) and carbonate (≥1330 °C) melts was observed. We have found that the presence of nickel precludes the formation of carbides in the reduced part of the sample and ensures stable diamond crystallization at 1400–1550 °C both in metal–carbon and carbonate melts. Our experiments demonstrate that diamonds from the metal–carbon melt are characterized by inclusions of taenite and magnesiowüstite. The morphology of these diamonds is determined by the {111} layer-by-layer grown faces, and their indicator characteristics are nitrogen–vacancy and nickel-related (884 nm) centers at 1400 °C or nickel–nitrogen centers (S3, 598 nm, 727 nm, 746 nm, etc.) at 1550 °C. For diamonds formed in the carbonate melt, the morphology is determined by the {100} and {111} (vicinal-growth) faces; carbonates are identified as inclusions; and nitrogen–vacancy centers H3, NV0, and NV– are fixed in the photoluminescence spectra. Experiments show that the indicator of the metal–carbonate interaction temperature is the degree of structural perfection of graphite, which increases in the range of 800–1550 °C.","PeriodicalId":49587,"journal":{"name":"Russian Geology and Geophysics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Modeling of the Mantle–Slab Interaction in the Metal–Carbonate System, Conditions of Crystallization and Indicator Characteristics of Diamond\",\"authors\":\"Y. Palyanov, Y. Bataleva, Yury M. Borzdov, I. Kupriyanov, D. V. Nechaev\",\"doi\":\"10.2113/rgg20234559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n —Experimental studies aimed at determining the conditions for the formation of diamond and graphite as a result of the redox interaction of reduced mantle rocks and oxidized rocks of the slab in a wide temperature range, including the conditions of both “cold” and “hot” subduction, were carried out on a “split-sphere” multianvil high-pressure apparatus (BARS) in the (Fe,Ni)–(Mg,Ca)CO3 system, at 6.3 GPa and 800–1550 °C for 35–105 h, using the “sandwich” assembly. We have established that the interaction of Fe,Ni metal and carbonate is due to the creation and propagation of a redox front, at rates from 1.3 (800 °C) to 118 μm/h (1550 °C). At T < 1200 °С, this interaction leads to the formation of alternating reaction zones (from the reduced center to the oxidized periphery): metal → metal + wüstite/magnesiowüstite → magnesiowüstite + graphite ± Mg,Fe,Ca carbonates → magnesite + aragonite. In this case, in the reduced part of the samples, the formation of a Ni,Fe metal phase strongly enriched in Ni (up to 65–70 wt.% vs. the initial 10 wt.%) was recorded. At higher temperatures, the formation of Fe,Ni metal–carbon (≥1200 °C) and carbonate (≥1330 °C) melts was observed. We have found that the presence of nickel precludes the formation of carbides in the reduced part of the sample and ensures stable diamond crystallization at 1400–1550 °C both in metal–carbon and carbonate melts. Our experiments demonstrate that diamonds from the metal–carbon melt are characterized by inclusions of taenite and magnesiowüstite. The morphology of these diamonds is determined by the {111} layer-by-layer grown faces, and their indicator characteristics are nitrogen–vacancy and nickel-related (884 nm) centers at 1400 °C or nickel–nitrogen centers (S3, 598 nm, 727 nm, 746 nm, etc.) at 1550 °C. For diamonds formed in the carbonate melt, the morphology is determined by the {100} and {111} (vicinal-growth) faces; carbonates are identified as inclusions; and nitrogen–vacancy centers H3, NV0, and NV– are fixed in the photoluminescence spectra. Experiments show that the indicator of the metal–carbonate interaction temperature is the degree of structural perfection of graphite, which increases in the range of 800–1550 °C.\",\"PeriodicalId\":49587,\"journal\":{\"name\":\"Russian Geology and Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Geology and Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/rgg20234559\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Geology and Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/rgg20234559","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

在(Fe,Ni) - (Mg,Ca)CO3体系中,采用“夹心”组件,在6.3 GPa、800-1550℃、35-105 h的条件下,利用“裂球”多砧高压仪器(BARS)进行了广泛温度范围内(包括“冷”和“热”俯冲条件下)地幔还原岩和氧化岩氧化还原相互作用形成金刚石和石墨的实验研究。我们已经确定,Fe,Ni金属和碳酸盐的相互作用是由于氧化还原锋的产生和传播,速率从1.3(800°C)到118 μm/h(1550°C)。在T < 1200°С时,这种相互作用导致交替反应区(从还原中心到氧化外围)的形成:金属→金属+ w stite/ magnesiow stite→镁ow stite +石墨±Mg,Fe,Ca碳酸盐→菱镁矿+文石。在这种情况下,在样品的还原部分,形成了Ni,Fe金属相,富集Ni(高达65-70 wt.%,而不是最初的10 wt.%)。在较高温度下,观察到Fe,Ni金属碳(≥1200℃)和碳酸盐(≥1330℃)熔体的形成。我们发现镍的存在阻止了样品还原部分碳化物的形成,并确保了金属碳和碳酸盐熔体在1400-1550°C时稳定的金刚石结晶。我们的实验表明,金属碳熔体中的金刚石具有带长石和镁钨石的包裹体特征。这些金刚石的形貌是由{111}层生长面决定的,它们的指示特征是1400℃时氮空位和镍相关中心(884 nm)或1550℃时镍氮中心(S3、598 nm、727 nm、746 nm等)。对于碳酸盐熔体中形成的金刚石,形貌由{100}和{111}(近生长)面决定;碳酸盐被认为是包裹体;在光致发光光谱中,氮空位中心H3、NV0和NV -是固定的。实验表明,金属-碳酸盐相互作用温度的标志是石墨的结构完善程度,在800-1550℃范围内石墨的结构完善程度逐渐增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Modeling of the Mantle–Slab Interaction in the Metal–Carbonate System, Conditions of Crystallization and Indicator Characteristics of Diamond
—Experimental studies aimed at determining the conditions for the formation of diamond and graphite as a result of the redox interaction of reduced mantle rocks and oxidized rocks of the slab in a wide temperature range, including the conditions of both “cold” and “hot” subduction, were carried out on a “split-sphere” multianvil high-pressure apparatus (BARS) in the (Fe,Ni)–(Mg,Ca)CO3 system, at 6.3 GPa and 800–1550 °C for 35–105 h, using the “sandwich” assembly. We have established that the interaction of Fe,Ni metal and carbonate is due to the creation and propagation of a redox front, at rates from 1.3 (800 °C) to 118 μm/h (1550 °C). At T < 1200 °С, this interaction leads to the formation of alternating reaction zones (from the reduced center to the oxidized periphery): metal → metal + wüstite/magnesiowüstite → magnesiowüstite + graphite ± Mg,Fe,Ca carbonates → magnesite + aragonite. In this case, in the reduced part of the samples, the formation of a Ni,Fe metal phase strongly enriched in Ni (up to 65–70 wt.% vs. the initial 10 wt.%) was recorded. At higher temperatures, the formation of Fe,Ni metal–carbon (≥1200 °C) and carbonate (≥1330 °C) melts was observed. We have found that the presence of nickel precludes the formation of carbides in the reduced part of the sample and ensures stable diamond crystallization at 1400–1550 °C both in metal–carbon and carbonate melts. Our experiments demonstrate that diamonds from the metal–carbon melt are characterized by inclusions of taenite and magnesiowüstite. The morphology of these diamonds is determined by the {111} layer-by-layer grown faces, and their indicator characteristics are nitrogen–vacancy and nickel-related (884 nm) centers at 1400 °C or nickel–nitrogen centers (S3, 598 nm, 727 nm, 746 nm, etc.) at 1550 °C. For diamonds formed in the carbonate melt, the morphology is determined by the {100} and {111} (vicinal-growth) faces; carbonates are identified as inclusions; and nitrogen–vacancy centers H3, NV0, and NV– are fixed in the photoluminescence spectra. Experiments show that the indicator of the metal–carbonate interaction temperature is the degree of structural perfection of graphite, which increases in the range of 800–1550 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Geology and Geophysics
Russian Geology and Geophysics 地学-地球科学综合
CiteScore
2.00
自引率
18.20%
发文量
95
审稿时长
4-8 weeks
期刊介绍: The journal publishes original reports of theoretical and methodological nature in the fields of geology, geophysics, and geochemistry, which contain data on composition and structure of the Earth''s crust and mantle, describes processes of formation and general regularities of commercial mineral occurrences, investigations on development and application of geological-geophysical methods for their revealing. As to works of regional nature, accelerated publication are available for original papers on a variety of problems of comparative geology taking into account specific character of Siberia, adjacent Asian countries and water areas. The journal will also publish reviews, critical articles, chronicle of the most important scientific events, and advertisements.
期刊最新文献
Horizontal Transverse Isotropy Studied Using Tools for Full-Azimuth Seismic Data Processing and an Advanced Well Logging Complex on the Example of Famennian Deposits of the Yugomashevskoye Field Geochemical Features of the Olduvai Event in the Sediments of Lake El’gygytgyn (Anadyr Plateau, Chukchi Peninsula) Detailed Investigation of Dolomites in the Middle Jurassic Samana Suk Formation, Kahi Section, Nizampur Basin, NW Himalayas, Pakistan Determination of Earthquake Depths Using Data of Cross-Sectional and Areal Deep Seismic Studies in Siberia Late Ordovician Shelf Deposition in Northern Gorny Altai: Lithology, Faunas, and Paleogeography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1