{"title":"有机负荷率对实验室规模序批式反应器处理乳制品废水性能的影响","authors":"Khac-Uan Do, Thuy-Ngan Thi Bui, Hung-Thuan Tran, Xuan-Quang Chu","doi":"10.46604/ijeti.2023.10763","DOIUrl":null,"url":null,"abstract":"This study aims to investigate, the effect of organic loading rates (OLRs), nutrient ratio addition, and sludge retention time (SRT) on treating dairy wastewater in a sequencing batch reactor (SBR) system. This investigation is verified by experiments conducted in 3 phases at 3 different OLRs (1.8, 1.2, and 0.9 kg/m3d, respectively). Urea ((NH2)2CO) is added to make a suitable (COD:N:P) ratio of (100:5:1) in dairy wastewater. The SRT is adjusted from 50 days to an appropriate value of 18 days. The obtained results show that the COD, TN, and TP removal efficiencies are increased with decreasing OLRs. Sludge concentration in the SBR tank is stable at 1100 mg/L after adding (NH2)2CO. In addition, the SBR operated at a suitable SRT (i.e. 18 days) helps the biomass stably, resulting in enhancement of COD, TN, and TP removal. The results are helpful to the design of SBR for treating dairy wastewater.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Organic Loading Rates on Performance of Treating Dairy Wastewater in a Lab-Scale Sequencing Batch Reactor\",\"authors\":\"Khac-Uan Do, Thuy-Ngan Thi Bui, Hung-Thuan Tran, Xuan-Quang Chu\",\"doi\":\"10.46604/ijeti.2023.10763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate, the effect of organic loading rates (OLRs), nutrient ratio addition, and sludge retention time (SRT) on treating dairy wastewater in a sequencing batch reactor (SBR) system. This investigation is verified by experiments conducted in 3 phases at 3 different OLRs (1.8, 1.2, and 0.9 kg/m3d, respectively). Urea ((NH2)2CO) is added to make a suitable (COD:N:P) ratio of (100:5:1) in dairy wastewater. The SRT is adjusted from 50 days to an appropriate value of 18 days. The obtained results show that the COD, TN, and TP removal efficiencies are increased with decreasing OLRs. Sludge concentration in the SBR tank is stable at 1100 mg/L after adding (NH2)2CO. In addition, the SBR operated at a suitable SRT (i.e. 18 days) helps the biomass stably, resulting in enhancement of COD, TN, and TP removal. The results are helpful to the design of SBR for treating dairy wastewater.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2023.10763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.10763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Organic Loading Rates on Performance of Treating Dairy Wastewater in a Lab-Scale Sequencing Batch Reactor
This study aims to investigate, the effect of organic loading rates (OLRs), nutrient ratio addition, and sludge retention time (SRT) on treating dairy wastewater in a sequencing batch reactor (SBR) system. This investigation is verified by experiments conducted in 3 phases at 3 different OLRs (1.8, 1.2, and 0.9 kg/m3d, respectively). Urea ((NH2)2CO) is added to make a suitable (COD:N:P) ratio of (100:5:1) in dairy wastewater. The SRT is adjusted from 50 days to an appropriate value of 18 days. The obtained results show that the COD, TN, and TP removal efficiencies are increased with decreasing OLRs. Sludge concentration in the SBR tank is stable at 1100 mg/L after adding (NH2)2CO. In addition, the SBR operated at a suitable SRT (i.e. 18 days) helps the biomass stably, resulting in enhancement of COD, TN, and TP removal. The results are helpful to the design of SBR for treating dairy wastewater.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.