基于偏差相关的LBP优化深度CNN用于皮肤癌症检测:混合元启发式特征选择

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-02-02 DOI:10.1142/s0219467824500232
B. K. M. Enturi, A. Suhasini, Narayana Satyala
{"title":"基于偏差相关的LBP优化深度CNN用于皮肤癌症检测:混合元启发式特征选择","authors":"B. K. M. Enturi, A. Suhasini, Narayana Satyala","doi":"10.1142/s0219467824500232","DOIUrl":null,"url":null,"abstract":"Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized Deep CNN with Deviation Relevance-based LBP for Skin Cancer Detection: Hybrid Metaheuristic Enabled Feature Selection\",\"authors\":\"B. K. M. Enturi, A. Suhasini, Narayana Satyala\",\"doi\":\"10.1142/s0219467824500232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467824500232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

皮肤病变的分割是皮肤镜图像中一项重要而艰巨的任务。本文提出了一种新的皮肤癌症识别方案:“预处理、分割、特征提取、最优特征选择和分类”。在这里,预处理是通过某些过程完成的。预处理的图像通过“Otsu阈值模型”进行分割。第三阶段是特征提取,提取基于偏差相关性的“局部二进制模式(DRLBP)、灰度共生矩阵(GLCM)特征和灰度游程矩阵(GLRM)特征”。从这些提取的特征中,通过粒子更新WOA(PU-WOA)模型来选择最优特征。随后,通过优化的DCNN和NN进行分类,以对皮肤损伤进行分类。为了使分类更加精确,利用引入的算法对DCNN进行了优化。与IPSO、IWOA、PSO+CNN、WOA+CNN和CNN方案等现有模型相比,该结果显示出0.998737的更高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Deep CNN with Deviation Relevance-based LBP for Skin Cancer Detection: Hybrid Metaheuristic Enabled Feature Selection
Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1