{"title":"基于偏差相关的LBP优化深度CNN用于皮肤癌症检测:混合元启发式特征选择","authors":"B. K. M. Enturi, A. Suhasini, Narayana Satyala","doi":"10.1142/s0219467824500232","DOIUrl":null,"url":null,"abstract":"Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized Deep CNN with Deviation Relevance-based LBP for Skin Cancer Detection: Hybrid Metaheuristic Enabled Feature Selection\",\"authors\":\"B. K. M. Enturi, A. Suhasini, Narayana Satyala\",\"doi\":\"10.1142/s0219467824500232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467824500232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Optimized Deep CNN with Deviation Relevance-based LBP for Skin Cancer Detection: Hybrid Metaheuristic Enabled Feature Selection
Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.