{"title":"柯伊伯带热成分的可能来源和形成机制","authors":"A. M. Kazantsev","doi":"10.3103/S0884591323030042","DOIUrl":null,"url":null,"abstract":"<p>A mechanism for the origin of Kuiper belt (KB) bodies different from the hitherto known mechanisms is proposed. The distributions of the orbital elements of most of the bodies of the hot component of the KB are analyzed. The shape of the distributions indicates that all of these bodies could have appeared as a result of the destruction of a single massive body (Kuiper belt planet, KBP). The separation velocities of the fragments were determined mainly by the linear velocities of the parts of the KBP at different depths and latitudes. The maximum separation velocity corresponded to the linear velocity on the surface of the KBP near the equator and could be 2.4 km/s. The size of the KBP could be either slightly smaller or larger than the size of the Earth. The spin period was approximately 4 h. The KBP spin axis was inclined at a slight angle to the ecliptic plane, and it was directed toward the Sun at the time of destruction. This mechanism is in good agreement with current observational data. It can explain the large number of bodies with satellites in the KB as well as the revealed dependence of the average density of bodies on their size. According to this mechanism, the spin axes of the formed debris (primarily large ones) should be inclined at small angles to the ecliptic plane. The spin axes of the dwarf planets Pluto and Haumea are inclined to the ecliptic plane at angles of 23° and 10°, respectively. The future data on the coordinates of the poles of other large KB bodies can become the final confirmation of the proposed mechanism.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"39 3","pages":"154 - 163"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possible Source and Mechanism of Origin of the Hot Component of the Kuiper Belt\",\"authors\":\"A. M. Kazantsev\",\"doi\":\"10.3103/S0884591323030042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A mechanism for the origin of Kuiper belt (KB) bodies different from the hitherto known mechanisms is proposed. The distributions of the orbital elements of most of the bodies of the hot component of the KB are analyzed. The shape of the distributions indicates that all of these bodies could have appeared as a result of the destruction of a single massive body (Kuiper belt planet, KBP). The separation velocities of the fragments were determined mainly by the linear velocities of the parts of the KBP at different depths and latitudes. The maximum separation velocity corresponded to the linear velocity on the surface of the KBP near the equator and could be 2.4 km/s. The size of the KBP could be either slightly smaller or larger than the size of the Earth. The spin period was approximately 4 h. The KBP spin axis was inclined at a slight angle to the ecliptic plane, and it was directed toward the Sun at the time of destruction. This mechanism is in good agreement with current observational data. It can explain the large number of bodies with satellites in the KB as well as the revealed dependence of the average density of bodies on their size. According to this mechanism, the spin axes of the formed debris (primarily large ones) should be inclined at small angles to the ecliptic plane. The spin axes of the dwarf planets Pluto and Haumea are inclined to the ecliptic plane at angles of 23° and 10°, respectively. The future data on the coordinates of the poles of other large KB bodies can become the final confirmation of the proposed mechanism.</p>\",\"PeriodicalId\":681,\"journal\":{\"name\":\"Kinematics and Physics of Celestial Bodies\",\"volume\":\"39 3\",\"pages\":\"154 - 163\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinematics and Physics of Celestial Bodies\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0884591323030042\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591323030042","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Possible Source and Mechanism of Origin of the Hot Component of the Kuiper Belt
A mechanism for the origin of Kuiper belt (KB) bodies different from the hitherto known mechanisms is proposed. The distributions of the orbital elements of most of the bodies of the hot component of the KB are analyzed. The shape of the distributions indicates that all of these bodies could have appeared as a result of the destruction of a single massive body (Kuiper belt planet, KBP). The separation velocities of the fragments were determined mainly by the linear velocities of the parts of the KBP at different depths and latitudes. The maximum separation velocity corresponded to the linear velocity on the surface of the KBP near the equator and could be 2.4 km/s. The size of the KBP could be either slightly smaller or larger than the size of the Earth. The spin period was approximately 4 h. The KBP spin axis was inclined at a slight angle to the ecliptic plane, and it was directed toward the Sun at the time of destruction. This mechanism is in good agreement with current observational data. It can explain the large number of bodies with satellites in the KB as well as the revealed dependence of the average density of bodies on their size. According to this mechanism, the spin axes of the formed debris (primarily large ones) should be inclined at small angles to the ecliptic plane. The spin axes of the dwarf planets Pluto and Haumea are inclined to the ecliptic plane at angles of 23° and 10°, respectively. The future data on the coordinates of the poles of other large KB bodies can become the final confirmation of the proposed mechanism.
期刊介绍:
Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.