使用消费级彩色相机建立表征回射器特性的指标

IF 2.7 4区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY Transportation Safety and Environment Pub Date : 2022-12-21 DOI:10.1093/tse/tdac039
Huayang He, Wenying Su, Qiutong Cheng
{"title":"使用消费级彩色相机建立表征回射器特性的指标","authors":"Huayang He, Wenying Su, Qiutong Cheng","doi":"10.1093/tse/tdac039","DOIUrl":null,"url":null,"abstract":"\n The coefficients of retroreflection and chromaticity coordinates are critical metrics for determining the quality of a retroreflector. However, conventional retroreflection measurement techniques rely heavily on the night-time colour, size, and characteristics of the sample being measured. This complicates the measurement process and leads to deviations in the test results. In addition, chromaticity cannot be determined using this approach. Therefore, it is necessary to improve the measurement accuracy, simplify the measurement process, and achieve the measurement of the traffic sign RA and chromaticity coordinates simultaneously. In this study, an improved method for retroreflector characterisation using imaging was proposed. This allowed for the measurement of the coefficients of retroreflection and the chromaticity coordinates simultaneously, and only a white standard sample was required for calibration. The primary components of the proposed system included a lighting projector, a receiver, two motorised rotational stages, a retroreflective sample holder, and customised software that used scaling factors to convert a digital signal into sample retroreflection coefficients and retroreflective chromaticity coordinates. The experimental results indicated that the raw data output from the camera exhibited a positive correlation relationship with the luminous flux from the surface of the retroreflector. The maximum measurement errors for the retroreflection and chromaticity were −12.2 cd/(lx·m2) and −2.09%, respectively. This method was inexpensive and convenient, used a commercially available digital camera, could help to identify defects in retroreflection and chromaticity for retroreflective sheeting, and led to increased accessibility for the quality control of retroreflective sheeting.","PeriodicalId":52804,"journal":{"name":"Transportation Safety and Environment","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of a metric to characterise retroreflector properties using a consumer-grade colour camera\",\"authors\":\"Huayang He, Wenying Su, Qiutong Cheng\",\"doi\":\"10.1093/tse/tdac039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The coefficients of retroreflection and chromaticity coordinates are critical metrics for determining the quality of a retroreflector. However, conventional retroreflection measurement techniques rely heavily on the night-time colour, size, and characteristics of the sample being measured. This complicates the measurement process and leads to deviations in the test results. In addition, chromaticity cannot be determined using this approach. Therefore, it is necessary to improve the measurement accuracy, simplify the measurement process, and achieve the measurement of the traffic sign RA and chromaticity coordinates simultaneously. In this study, an improved method for retroreflector characterisation using imaging was proposed. This allowed for the measurement of the coefficients of retroreflection and the chromaticity coordinates simultaneously, and only a white standard sample was required for calibration. The primary components of the proposed system included a lighting projector, a receiver, two motorised rotational stages, a retroreflective sample holder, and customised software that used scaling factors to convert a digital signal into sample retroreflection coefficients and retroreflective chromaticity coordinates. The experimental results indicated that the raw data output from the camera exhibited a positive correlation relationship with the luminous flux from the surface of the retroreflector. The maximum measurement errors for the retroreflection and chromaticity were −12.2 cd/(lx·m2) and −2.09%, respectively. This method was inexpensive and convenient, used a commercially available digital camera, could help to identify defects in retroreflection and chromaticity for retroreflective sheeting, and led to increased accessibility for the quality control of retroreflective sheeting.\",\"PeriodicalId\":52804,\"journal\":{\"name\":\"Transportation Safety and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Safety and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/tse/tdac039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Safety and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/tse/tdac039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

反射系数和色度坐标是决定反射镜质量的关键指标。然而,传统的反射测量技术在很大程度上依赖于被测量样品的夜间颜色、大小和特征。这会使测量过程复杂化,并导致测试结果出现偏差。此外,色度不能用这种方法确定。因此,有必要提高测量精度,简化测量过程,实现交通标志RA和色度坐标的同时测量。在这项研究中,提出了一种改进的后向反射器成像表征方法。这样可以同时测量反射系数和色度坐标,并且只需要一个白色标准样品进行校准。该系统的主要组成部分包括一个照明投影仪、一个接收器、两个电动旋转台、一个反反射样品支架,以及使用比例因子将数字信号转换为样品反反射系数和反反射色度坐标的定制软件。实验结果表明,相机输出的原始数据与反光镜表面的光通量呈正相关关系。反射率和色度的最大测量误差分别为−12.2 cd/(lx·m2)和−2.09%。该方法价格低廉,使用数码相机,可以帮助识别反光片材的反光和色度缺陷,并增加了对反光片材质量控制的可及性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishment of a metric to characterise retroreflector properties using a consumer-grade colour camera
The coefficients of retroreflection and chromaticity coordinates are critical metrics for determining the quality of a retroreflector. However, conventional retroreflection measurement techniques rely heavily on the night-time colour, size, and characteristics of the sample being measured. This complicates the measurement process and leads to deviations in the test results. In addition, chromaticity cannot be determined using this approach. Therefore, it is necessary to improve the measurement accuracy, simplify the measurement process, and achieve the measurement of the traffic sign RA and chromaticity coordinates simultaneously. In this study, an improved method for retroreflector characterisation using imaging was proposed. This allowed for the measurement of the coefficients of retroreflection and the chromaticity coordinates simultaneously, and only a white standard sample was required for calibration. The primary components of the proposed system included a lighting projector, a receiver, two motorised rotational stages, a retroreflective sample holder, and customised software that used scaling factors to convert a digital signal into sample retroreflection coefficients and retroreflective chromaticity coordinates. The experimental results indicated that the raw data output from the camera exhibited a positive correlation relationship with the luminous flux from the surface of the retroreflector. The maximum measurement errors for the retroreflection and chromaticity were −12.2 cd/(lx·m2) and −2.09%, respectively. This method was inexpensive and convenient, used a commercially available digital camera, could help to identify defects in retroreflection and chromaticity for retroreflective sheeting, and led to increased accessibility for the quality control of retroreflective sheeting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Safety and Environment
Transportation Safety and Environment TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
3.90
自引率
13.60%
发文量
32
审稿时长
10 weeks
期刊最新文献
Parking choice behavior analysis of rural residents based on latent variable random forest model Risk Mapping of Wildlife-Vehicle Collisions across the State of Montana, U.S.A.: A Machine Learning Approach for Imbalanced Data along Rural Roads Evolutionary game analysis of the shared parking market promotion under government management The Characteristics of Driver Lane-Changing Behavior in Congested Road Environments Effect of helmet wearing regulation on electric bike riders: a case study of two cities in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1