不同生境粉蚧种群的遗传多样性和分化

IF 0.9 3区 农林科学 Q3 ENTOMOLOGY International Journal of Acarology Pub Date : 2023-07-07 DOI:10.1080/01647954.2023.2230966
X. Tao, Zheng-Yi Li, Tingting Qiao, Xinrui Kan, Xiaoyan Zhou, Jingyan Jiang, C. Ye, E. Sun
{"title":"不同生境粉蚧种群的遗传多样性和分化","authors":"X. Tao, Zheng-Yi Li, Tingting Qiao, Xinrui Kan, Xiaoyan Zhou, Jingyan Jiang, C. Ye, E. Sun","doi":"10.1080/01647954.2023.2230966","DOIUrl":null,"url":null,"abstract":"ABSTRACT Dermatophagoides farinae (Astigmata: Pyroglyphidae) occurs in both homes and storage environments. The species produces biochemically diverse allergens that cause allergic reactions and seriously endanger human health. Habitat diversity can lead to divergent adaptive selection and reduced gene flow, thereby increasing genetic drift; both factors contribute to genetic differentiation. However, there is a lack of research concerning the genetic diversity and differentiation of D. farinae in different habitats. In this study, the genetic diversity and differentiation of D. farinae populations in different habitats were studied using the mitochondrial cytochrome b (Cytb) gene, the cytochrome c oxidase subunit I (COI) gene, and the ribosomal internal transcribed spacer (ITS) region. Both pillow cores (ZX) and dormitory (SS) habitats had higher haplotype diversity than the flour mill (MF) habitat. The reasons for this phenomenon are likely to be food availability as well as differences in temperature and humidity among habitats. There was significant genetic differentiation (Fst > 0.05, P < 0.05) between the ZX and MF and between the MF and SS habitats, but there was no significant genetic differentiation between the ZX and SS habitats (Fst < 0.05, P > 0.05) based on both Cytb and COI genes, reflecting the difference between mitochondrial and nuclear genes. The low level of gene flow observed for ZX-MF and MF-SS and the gene flow between the ZX and SS habitats supported the above results. A haplotype network and a neighbour-joining phylogenetic tree showed that individuals from the ZX and SS habitats occurred in two clades without a clear distribution boundary, indicating that the genetic structure was not correlated with the habitat distribution. This research is the first genetic analysis of D. farinae in different habitats. The study can improve our understanding of the population genetics of D. farinae in different habitats and aid in the development of more effective management strategies.","PeriodicalId":13803,"journal":{"name":"International Journal of Acarology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic diversity and differentiation of Dermatophagoides farinae (Astigmata: Pyroglyphidae) populations in different habitats\",\"authors\":\"X. Tao, Zheng-Yi Li, Tingting Qiao, Xinrui Kan, Xiaoyan Zhou, Jingyan Jiang, C. Ye, E. Sun\",\"doi\":\"10.1080/01647954.2023.2230966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Dermatophagoides farinae (Astigmata: Pyroglyphidae) occurs in both homes and storage environments. The species produces biochemically diverse allergens that cause allergic reactions and seriously endanger human health. Habitat diversity can lead to divergent adaptive selection and reduced gene flow, thereby increasing genetic drift; both factors contribute to genetic differentiation. However, there is a lack of research concerning the genetic diversity and differentiation of D. farinae in different habitats. In this study, the genetic diversity and differentiation of D. farinae populations in different habitats were studied using the mitochondrial cytochrome b (Cytb) gene, the cytochrome c oxidase subunit I (COI) gene, and the ribosomal internal transcribed spacer (ITS) region. Both pillow cores (ZX) and dormitory (SS) habitats had higher haplotype diversity than the flour mill (MF) habitat. The reasons for this phenomenon are likely to be food availability as well as differences in temperature and humidity among habitats. There was significant genetic differentiation (Fst > 0.05, P < 0.05) between the ZX and MF and between the MF and SS habitats, but there was no significant genetic differentiation between the ZX and SS habitats (Fst < 0.05, P > 0.05) based on both Cytb and COI genes, reflecting the difference between mitochondrial and nuclear genes. The low level of gene flow observed for ZX-MF and MF-SS and the gene flow between the ZX and SS habitats supported the above results. A haplotype network and a neighbour-joining phylogenetic tree showed that individuals from the ZX and SS habitats occurred in two clades without a clear distribution boundary, indicating that the genetic structure was not correlated with the habitat distribution. This research is the first genetic analysis of D. farinae in different habitats. The study can improve our understanding of the population genetics of D. farinae in different habitats and aid in the development of more effective management strategies.\",\"PeriodicalId\":13803,\"journal\":{\"name\":\"International Journal of Acarology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acarology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/01647954.2023.2230966\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acarology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/01647954.2023.2230966","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic diversity and differentiation of Dermatophagoides farinae (Astigmata: Pyroglyphidae) populations in different habitats
ABSTRACT Dermatophagoides farinae (Astigmata: Pyroglyphidae) occurs in both homes and storage environments. The species produces biochemically diverse allergens that cause allergic reactions and seriously endanger human health. Habitat diversity can lead to divergent adaptive selection and reduced gene flow, thereby increasing genetic drift; both factors contribute to genetic differentiation. However, there is a lack of research concerning the genetic diversity and differentiation of D. farinae in different habitats. In this study, the genetic diversity and differentiation of D. farinae populations in different habitats were studied using the mitochondrial cytochrome b (Cytb) gene, the cytochrome c oxidase subunit I (COI) gene, and the ribosomal internal transcribed spacer (ITS) region. Both pillow cores (ZX) and dormitory (SS) habitats had higher haplotype diversity than the flour mill (MF) habitat. The reasons for this phenomenon are likely to be food availability as well as differences in temperature and humidity among habitats. There was significant genetic differentiation (Fst > 0.05, P < 0.05) between the ZX and MF and between the MF and SS habitats, but there was no significant genetic differentiation between the ZX and SS habitats (Fst < 0.05, P > 0.05) based on both Cytb and COI genes, reflecting the difference between mitochondrial and nuclear genes. The low level of gene flow observed for ZX-MF and MF-SS and the gene flow between the ZX and SS habitats supported the above results. A haplotype network and a neighbour-joining phylogenetic tree showed that individuals from the ZX and SS habitats occurred in two clades without a clear distribution boundary, indicating that the genetic structure was not correlated with the habitat distribution. This research is the first genetic analysis of D. farinae in different habitats. The study can improve our understanding of the population genetics of D. farinae in different habitats and aid in the development of more effective management strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
60
审稿时长
6-12 weeks
期刊介绍: The International Journal of Acarology has a global readership and publishes original research and review papers on a wide variety of acarological subjects including: • mite and tick behavior • biochemistry • biology • control • ecology • evolution • morphology • physiology • systematics • taxonomy (single species descriptions are discouraged unless accompanied by additional new information on ecology, biology, systematics, etc.) All submitted manuscripts are subject to initial appraisal by the Editor. If the English is not of a quality suitable for reviewers, the manuscript will be returned. If found suitable for further consideration, it will be submitted to peer review by independent, anonymous expert referees. All peer review is single blind.
期刊最新文献
New genera and new eriophyoid species of Tegonotini (Acari: Eriophyoidea) from China First record of Malgachebates (Acari, Oribatida, Plasmobatidae) from Ethiopia, with description of a new species based on adult and nymphs The mite Dentocarpus silvai (Acari, chirodiscidae) as a parasite of the bat Molossus molossus (Chiroptera, molossidae) in southeastern Brazil Three new eriophyid species (Acari: Eriophyoidea: Eriophyidae) from Southwestern China A new species of Coleoscirus (Acariformes: Cunaxidae) from China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1