W. A. Chiba de Castro, R. V. Almeida, R. Xavier, I. Bianchini, H. Moya, D. S. Silva Matos
{"title":"亚洲入侵植物Hedychium coronarium J.König(姜科)在南美洲热带河岸带的凋落物积累和生物量动态","authors":"W. A. Chiba de Castro, R. V. Almeida, R. Xavier, I. Bianchini, H. Moya, D. S. Silva Matos","doi":"10.1080/17550874.2019.1673496","DOIUrl":null,"url":null,"abstract":"ABSTRACT Background: Promoting changes in abiotic conditions and ecosystem processes, such as decomposition, is a mechanism by which some exotic plant species displace native plants and become invasive. Aims: We monitored ramets of Hedychium coronarium over 30 months to estimate the litter decay rate, biomass dynamics and litter accumulation over time in riparian sites invaded by the species in southeastern Brazil. Methods: We measured the number, height, emergence and mortality of ramets in three environments invaded by H. coronarium (natural, rural and urban). We also measured litter decay in situ and in in vitro experiments. We used sinusoidal models to describe height fluctuation and exponential models to simulate litter decay and litter accumulation. Results: Ramets of H. coronarium showed high seasonal variation in terms of height and emergence, as well as low litter decay. Accordingly, our models predicted high litter production and a seasonal pattern of litter accumulation in invaded sites. Conclusions: H. coronarium produces a great amount of litter, which shows slow decay and hence seems to affect decomposition processes. Investigating seasonal variation on the effects of invasive species on ecosystem functioning shed light on the factors driving the success and impact of invasive plants.","PeriodicalId":49691,"journal":{"name":"Plant Ecology & Diversity","volume":"13 1","pages":"47 - 59"},"PeriodicalIF":1.7000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17550874.2019.1673496","citationCount":"13","resultStr":"{\"title\":\"Litter accumulation and biomass dynamics in riparian zones in tropical South America of the Asian invasive plant Hedychium coronarium J. König (Zingiberaceae)\",\"authors\":\"W. A. Chiba de Castro, R. V. Almeida, R. Xavier, I. Bianchini, H. Moya, D. S. Silva Matos\",\"doi\":\"10.1080/17550874.2019.1673496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Background: Promoting changes in abiotic conditions and ecosystem processes, such as decomposition, is a mechanism by which some exotic plant species displace native plants and become invasive. Aims: We monitored ramets of Hedychium coronarium over 30 months to estimate the litter decay rate, biomass dynamics and litter accumulation over time in riparian sites invaded by the species in southeastern Brazil. Methods: We measured the number, height, emergence and mortality of ramets in three environments invaded by H. coronarium (natural, rural and urban). We also measured litter decay in situ and in in vitro experiments. We used sinusoidal models to describe height fluctuation and exponential models to simulate litter decay and litter accumulation. Results: Ramets of H. coronarium showed high seasonal variation in terms of height and emergence, as well as low litter decay. Accordingly, our models predicted high litter production and a seasonal pattern of litter accumulation in invaded sites. Conclusions: H. coronarium produces a great amount of litter, which shows slow decay and hence seems to affect decomposition processes. Investigating seasonal variation on the effects of invasive species on ecosystem functioning shed light on the factors driving the success and impact of invasive plants.\",\"PeriodicalId\":49691,\"journal\":{\"name\":\"Plant Ecology & Diversity\",\"volume\":\"13 1\",\"pages\":\"47 - 59\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17550874.2019.1673496\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Ecology & Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17550874.2019.1673496\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Ecology & Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17550874.2019.1673496","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Litter accumulation and biomass dynamics in riparian zones in tropical South America of the Asian invasive plant Hedychium coronarium J. König (Zingiberaceae)
ABSTRACT Background: Promoting changes in abiotic conditions and ecosystem processes, such as decomposition, is a mechanism by which some exotic plant species displace native plants and become invasive. Aims: We monitored ramets of Hedychium coronarium over 30 months to estimate the litter decay rate, biomass dynamics and litter accumulation over time in riparian sites invaded by the species in southeastern Brazil. Methods: We measured the number, height, emergence and mortality of ramets in three environments invaded by H. coronarium (natural, rural and urban). We also measured litter decay in situ and in in vitro experiments. We used sinusoidal models to describe height fluctuation and exponential models to simulate litter decay and litter accumulation. Results: Ramets of H. coronarium showed high seasonal variation in terms of height and emergence, as well as low litter decay. Accordingly, our models predicted high litter production and a seasonal pattern of litter accumulation in invaded sites. Conclusions: H. coronarium produces a great amount of litter, which shows slow decay and hence seems to affect decomposition processes. Investigating seasonal variation on the effects of invasive species on ecosystem functioning shed light on the factors driving the success and impact of invasive plants.
期刊介绍:
Plant Ecology and Diversity is an international journal for communicating results and novel ideas in plant science, in print and on-line, six times a year. All areas of plant biology relating to ecology, evolution and diversity are of interest, including those which explicitly deal with today''s highly topical themes, such as biodiversity, conservation and global change. We consider submissions that address fundamental questions which are pertinent to contemporary plant science. Articles concerning extreme environments world-wide are particularly welcome.
Plant Ecology and Diversity considers for publication original research articles, short communications, reviews, and scientific correspondence that explore thought-provoking ideas.
To aid redressing ‘publication bias’ the journal is unique in reporting, in the form of short communications, ‘negative results’ and ‘repeat experiments’ that test ecological theories experimentally, in theoretically flawless and methodologically sound papers. Research reviews and method papers, are also encouraged.
Plant Ecology & Diversity publishes high-quality and topical research that demonstrates solid scholarship. As such, the journal does not publish purely descriptive papers. Submissions are required to focus on research topics that are broad in their scope and thus provide new insights and contribute to theory. The original research should address clear hypotheses that test theory or questions and offer new insights on topics of interest to an international readership.