{"title":"用直接和间接方法比较多变量波动率预测","authors":"Alessandra Amendola, V. Candila","doi":"10.21314/JOR.2017.364","DOIUrl":null,"url":null,"abstract":"Multivariate volatility models can be evaluated via direct and indirect approaches. The former uses statistical loss functions (LFs) and a proxy to provide consistent estimates of the unobserved volatility. The latter uses utility LFs or other instruments, such as value-at-risk and its backtesting procedures. Existing studies commonly employ these procedures separately, focusing mostly on the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) models. This work investigates and compares the two approaches in a model selection context. An extensive Monte Carlo simulation experiment is carried out, including MGARCH models based on daily returns and, extending the current literature, models that directly use the realized covariance, obtained from intraday returns. With reference to the direct approach, we rank the set of competing models empirically by means of four consistent statistical LFs and by reducing the quality of the volatility proxy. For the indirect approach, we use standard backtesting procedures to evaluate whether the number of value-at-risk violations is acceptable, and whether these violations are independently distributed over time.","PeriodicalId":46697,"journal":{"name":"Journal of Risk","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2017-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Comparing Multivariate Volatility Forecasts by Direct and Indirect Approaches\",\"authors\":\"Alessandra Amendola, V. Candila\",\"doi\":\"10.21314/JOR.2017.364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate volatility models can be evaluated via direct and indirect approaches. The former uses statistical loss functions (LFs) and a proxy to provide consistent estimates of the unobserved volatility. The latter uses utility LFs or other instruments, such as value-at-risk and its backtesting procedures. Existing studies commonly employ these procedures separately, focusing mostly on the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) models. This work investigates and compares the two approaches in a model selection context. An extensive Monte Carlo simulation experiment is carried out, including MGARCH models based on daily returns and, extending the current literature, models that directly use the realized covariance, obtained from intraday returns. With reference to the direct approach, we rank the set of competing models empirically by means of four consistent statistical LFs and by reducing the quality of the volatility proxy. For the indirect approach, we use standard backtesting procedures to evaluate whether the number of value-at-risk violations is acceptable, and whether these violations are independently distributed over time.\",\"PeriodicalId\":46697,\"journal\":{\"name\":\"Journal of Risk\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Risk\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/JOR.2017.364\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JOR.2017.364","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Comparing Multivariate Volatility Forecasts by Direct and Indirect Approaches
Multivariate volatility models can be evaluated via direct and indirect approaches. The former uses statistical loss functions (LFs) and a proxy to provide consistent estimates of the unobserved volatility. The latter uses utility LFs or other instruments, such as value-at-risk and its backtesting procedures. Existing studies commonly employ these procedures separately, focusing mostly on the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) models. This work investigates and compares the two approaches in a model selection context. An extensive Monte Carlo simulation experiment is carried out, including MGARCH models based on daily returns and, extending the current literature, models that directly use the realized covariance, obtained from intraday returns. With reference to the direct approach, we rank the set of competing models empirically by means of four consistent statistical LFs and by reducing the quality of the volatility proxy. For the indirect approach, we use standard backtesting procedures to evaluate whether the number of value-at-risk violations is acceptable, and whether these violations are independently distributed over time.
期刊介绍:
This international peer-reviewed journal publishes a broad range of original research papers which aim to further develop understanding of financial risk management. As the only publication devoted exclusively to theoretical and empirical studies in financial risk management, The Journal of Risk promotes far-reaching research on the latest innovations in this field, with particular focus on the measurement, management and analysis of financial risk. The Journal of Risk is particularly interested in papers on the following topics: Risk management regulations and their implications, Risk capital allocation and risk budgeting, Efficient evaluation of risk measures under increasingly complex and realistic model assumptions, Impact of risk measurement on portfolio allocation, Theoretical development of alternative risk measures, Hedging (linear and non-linear) under alternative risk measures, Financial market model risk, Estimation of volatility and unanticipated jumps, Capital allocation.