{"title":"基于Web数据挖掘的新型冠状病毒COVID-19流行病学特征","authors":"Wen Zheng, Cai Zhao, Z. Li, X. Wu, Tao Hu","doi":"10.12178/1001-0548.14_2020079","DOIUrl":null,"url":null,"abstract":"Based on the Selenium data mining technology, the epidemiological characteristics of real help cases in Sina Weibo were obtained by the analysis of 690 valid cases posted in the Sina Weibo “Pneumonia Patients Asking for Help” topic from February 4 to February 22, 2020. The research showed that 97.6% of the patients seeking for help came from Wuhan, mainly centralized in Wuchang, Tongkou, Hanyang etc. urban areas, and the proportion is directly proportional to the local medical resources and population density. The cases of Weibo help were mainly distributed from February 4 to February 7, 2020. With the relief of medical resources, the number of cases seeking help through social media decreased significantly. The distribution of patients, whose diagnosed date was mainly from January 16 to February 6, 2020, was basically consistent with the case information released by the Chinese Center for Disease Control and Prevention (CCDC). The median age of patients seeking for help was 60 years old, which was much higher than the data released by the CCDC but was roughly coincident with the data of the central hospital of Wuhan. The results of this study indicate that when dealing with major outbreaks of infectious diseases, social media are equally important in epidemiological analysis as well as the role in the dissemination of public opinion. Based on the wide adoption and timeliness nature of social media, it will be helpful for decision-makers to quickly grasp the real-world situation as it is combined with data mining or big data analysis.","PeriodicalId":35864,"journal":{"name":"电子科技大学学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epidemiological Characteristics of Novel Coronavirus COVID-19 Based on Web Data Mining\",\"authors\":\"Wen Zheng, Cai Zhao, Z. Li, X. Wu, Tao Hu\",\"doi\":\"10.12178/1001-0548.14_2020079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the Selenium data mining technology, the epidemiological characteristics of real help cases in Sina Weibo were obtained by the analysis of 690 valid cases posted in the Sina Weibo “Pneumonia Patients Asking for Help” topic from February 4 to February 22, 2020. The research showed that 97.6% of the patients seeking for help came from Wuhan, mainly centralized in Wuchang, Tongkou, Hanyang etc. urban areas, and the proportion is directly proportional to the local medical resources and population density. The cases of Weibo help were mainly distributed from February 4 to February 7, 2020. With the relief of medical resources, the number of cases seeking help through social media decreased significantly. The distribution of patients, whose diagnosed date was mainly from January 16 to February 6, 2020, was basically consistent with the case information released by the Chinese Center for Disease Control and Prevention (CCDC). The median age of patients seeking for help was 60 years old, which was much higher than the data released by the CCDC but was roughly coincident with the data of the central hospital of Wuhan. The results of this study indicate that when dealing with major outbreaks of infectious diseases, social media are equally important in epidemiological analysis as well as the role in the dissemination of public opinion. Based on the wide adoption and timeliness nature of social media, it will be helpful for decision-makers to quickly grasp the real-world situation as it is combined with data mining or big data analysis.\",\"PeriodicalId\":35864,\"journal\":{\"name\":\"电子科技大学学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电子科技大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.12178/1001-0548.14_2020079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电子科技大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12178/1001-0548.14_2020079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Epidemiological Characteristics of Novel Coronavirus COVID-19 Based on Web Data Mining
Based on the Selenium data mining technology, the epidemiological characteristics of real help cases in Sina Weibo were obtained by the analysis of 690 valid cases posted in the Sina Weibo “Pneumonia Patients Asking for Help” topic from February 4 to February 22, 2020. The research showed that 97.6% of the patients seeking for help came from Wuhan, mainly centralized in Wuchang, Tongkou, Hanyang etc. urban areas, and the proportion is directly proportional to the local medical resources and population density. The cases of Weibo help were mainly distributed from February 4 to February 7, 2020. With the relief of medical resources, the number of cases seeking help through social media decreased significantly. The distribution of patients, whose diagnosed date was mainly from January 16 to February 6, 2020, was basically consistent with the case information released by the Chinese Center for Disease Control and Prevention (CCDC). The median age of patients seeking for help was 60 years old, which was much higher than the data released by the CCDC but was roughly coincident with the data of the central hospital of Wuhan. The results of this study indicate that when dealing with major outbreaks of infectious diseases, social media are equally important in epidemiological analysis as well as the role in the dissemination of public opinion. Based on the wide adoption and timeliness nature of social media, it will be helpful for decision-makers to quickly grasp the real-world situation as it is combined with data mining or big data analysis.