{"title":"一种在雾节点中重新调度抢占任务的强化学习算法","authors":"Biji Nair, S. M. Bhanu","doi":"10.1007/s10951-022-00725-x","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":50061,"journal":{"name":"Journal of Scheduling","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A reinforcement learning algorithm for rescheduling preempted tasks in fog nodes\",\"authors\":\"Biji Nair, S. M. Bhanu\",\"doi\":\"10.1007/s10951-022-00725-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":50061,\"journal\":{\"name\":\"Journal of Scheduling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scheduling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10951-022-00725-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scheduling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10951-022-00725-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
期刊介绍:
The Journal of Scheduling provides a recognized global forum for the publication of all forms of scheduling research. First published in June 1998, Journal of Scheduling covers advances in scheduling research, such as the latest techniques, applications, theoretical issues and novel approaches to problems. The journal is of direct relevance to the areas of Computer Science, Discrete Mathematics, Operational Research, Engineering, Management, Artificial Intelligence, Construction, Distribution, Manufacturing, Transport, Aerospace and Retail and Service Industries. These disciplines face complex scheduling needs and all stand to gain from advances in scheduling technology and understanding.