预测糖耐量受损患者的颈动脉粥样硬化-机器学习技术的性能分析

Q3 Business, Management and Accounting International Journal of Enterprise Network Management Pub Date : 2019-06-27 DOI:10.1504/IJENM.2019.10022245
A. Maruthamuthu, M. Punniyamoorthy, S. Paluru, Sindhura Tammuluri
{"title":"预测糖耐量受损患者的颈动脉粥样硬化-机器学习技术的性能分析","authors":"A. Maruthamuthu, M. Punniyamoorthy, S. Paluru, Sindhura Tammuluri","doi":"10.1504/IJENM.2019.10022245","DOIUrl":null,"url":null,"abstract":"The focus of this paper is to examine factors associated with carotid atherosclerosis in patients with impaired glucose tolerance (IGT), and to predict the rapid progression of carotid intima-media thickness (IMT). The proposed machine learning methods performed well and accurately predicted the progression of carotid IMT. The linear support vector machine, nonlinear support vector machine with a radial basis kernel function, multilayer perceptron (MLP), and the Naive Bayes method were employed. A comparison of these methods was conducted using the Brier score, and the accuracy was tested using a confusion matrix.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of carotid atherosclerosis in patients with impaired glucose tolerance - a performance analysis of machine learning techniques\",\"authors\":\"A. Maruthamuthu, M. Punniyamoorthy, S. Paluru, Sindhura Tammuluri\",\"doi\":\"10.1504/IJENM.2019.10022245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this paper is to examine factors associated with carotid atherosclerosis in patients with impaired glucose tolerance (IGT), and to predict the rapid progression of carotid intima-media thickness (IMT). The proposed machine learning methods performed well and accurately predicted the progression of carotid IMT. The linear support vector machine, nonlinear support vector machine with a radial basis kernel function, multilayer perceptron (MLP), and the Naive Bayes method were employed. A comparison of these methods was conducted using the Brier score, and the accuracy was tested using a confusion matrix.\",\"PeriodicalId\":39284,\"journal\":{\"name\":\"International Journal of Enterprise Network Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Enterprise Network Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJENM.2019.10022245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJENM.2019.10022245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是研究糖耐量受损(IGT)患者颈动脉粥样硬化的相关因素,并预测颈动脉内膜-中膜厚度(IMT)的快速进展。所提出的机器学习方法表现良好,准确预测了颈动脉IMT的进展。采用了线性支持向量机、具有径向基核函数的非线性支持向量机,多层感知器(MLP)和Naive Bayes方法。使用Brier评分对这些方法进行比较,并使用混淆矩阵测试准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of carotid atherosclerosis in patients with impaired glucose tolerance - a performance analysis of machine learning techniques
The focus of this paper is to examine factors associated with carotid atherosclerosis in patients with impaired glucose tolerance (IGT), and to predict the rapid progression of carotid intima-media thickness (IMT). The proposed machine learning methods performed well and accurately predicted the progression of carotid IMT. The linear support vector machine, nonlinear support vector machine with a radial basis kernel function, multilayer perceptron (MLP), and the Naive Bayes method were employed. A comparison of these methods was conducted using the Brier score, and the accuracy was tested using a confusion matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
期刊最新文献
Multi-tier firm-level analysis of global auto supply chain: centrality and financial performance Development of coating material for low carbon steels using MCDM Multi-objective optimisation of wear process parameters of 413/fly ash composites using grey relational analysis Fashion market segmentation using Facebook: an empirical approach Development of coating material for low carbon steels using MCDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1