根接近1的AR(1)过程的最小绝对偏差估计

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Annals of the Institute of Statistical Mathematics Pub Date : 2023-01-23 DOI:10.1007/s10463-022-00864-0
Nannan Ma, Hailin Sang, Guangyu Yang
{"title":"根接近1的AR(1)过程的最小绝对偏差估计","authors":"Nannan Ma,&nbsp;Hailin Sang,&nbsp;Guangyu Yang","doi":"10.1007/s10463-022-00864-0","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the asymptotic theory of least absolute deviation estimators for AR(1) processes with autoregressive parameter satisfying <span>\\(n(\\rho _n-1)\\rightarrow \\gamma\\)</span> for some fixed <span>\\(\\gamma\\)</span> as <span>\\(n\\rightarrow \\infty\\)</span>, which is parallel to the results of ordinary least squares estimators developed by Andrews and Guggenberger (Journal of Time Series Analysis, 29, 203–212, 2008) in the case <span>\\(\\gamma = 0\\)</span> or Chan and Wei (Annals of Statistics, 15, 1050–1063, 1987) and Phillips (Biometrika, 74, 535–574, 1987) in the case <span>\\(\\gamma \\ne 0\\)</span>. Simulation experiments are conducted to confirm the theoretical results and to demonstrate the robustness of the least absolute deviation estimation.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Least absolute deviation estimation for AR(1) processes with roots close to unity\",\"authors\":\"Nannan Ma,&nbsp;Hailin Sang,&nbsp;Guangyu Yang\",\"doi\":\"10.1007/s10463-022-00864-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the asymptotic theory of least absolute deviation estimators for AR(1) processes with autoregressive parameter satisfying <span>\\\\(n(\\\\rho _n-1)\\\\rightarrow \\\\gamma\\\\)</span> for some fixed <span>\\\\(\\\\gamma\\\\)</span> as <span>\\\\(n\\\\rightarrow \\\\infty\\\\)</span>, which is parallel to the results of ordinary least squares estimators developed by Andrews and Guggenberger (Journal of Time Series Analysis, 29, 203–212, 2008) in the case <span>\\\\(\\\\gamma = 0\\\\)</span> or Chan and Wei (Annals of Statistics, 15, 1050–1063, 1987) and Phillips (Biometrika, 74, 535–574, 1987) in the case <span>\\\\(\\\\gamma \\\\ne 0\\\\)</span>. Simulation experiments are conducted to confirm the theoretical results and to demonstrate the robustness of the least absolute deviation estimation.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00864-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00864-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对于自回归参数满足\(n(\rho _n-1)\rightarrow \gamma\)的AR(1)过程,对于某些固定的\(\gamma\) = \(n\rightarrow \infty\),我们建立了最小绝对偏差估计量的渐近理论,这与andrew和Guggenberger (Journal of Time Series Analysis, 29,203 - 212,2008)在\(\gamma = 0\)或Chan和Wei (Annals of Statistics, 15,1050 - 1063, 1987)和Phillips (Biometrika, 74,535 - 574)的情况下的普通最小二乘估计量的结果相似。1987)在\(\gamma \ne 0\)的情况下。仿真实验验证了理论结果,并验证了最小绝对偏差估计的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Least absolute deviation estimation for AR(1) processes with roots close to unity

We establish the asymptotic theory of least absolute deviation estimators for AR(1) processes with autoregressive parameter satisfying \(n(\rho _n-1)\rightarrow \gamma\) for some fixed \(\gamma\) as \(n\rightarrow \infty\), which is parallel to the results of ordinary least squares estimators developed by Andrews and Guggenberger (Journal of Time Series Analysis, 29, 203–212, 2008) in the case \(\gamma = 0\) or Chan and Wei (Annals of Statistics, 15, 1050–1063, 1987) and Phillips (Biometrika, 74, 535–574, 1987) in the case \(\gamma \ne 0\). Simulation experiments are conducted to confirm the theoretical results and to demonstrate the robustness of the least absolute deviation estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
期刊最新文献
Estimation of value-at-risk by $$L^{p}$$ quantile regression Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field Asymptotic expected sensitivity function and its applications to measures of monotone association Penalized estimation for non-identifiable models Hidden AR process and adaptive Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1