{"title":"关于pracoppa - leindler不等式的函数的几何组合","authors":"Graziano Crasta, Ilaria Fragalà","doi":"10.1112/mtk.12192","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new operation between nonnegative integrable functions on <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math>, that we call <i>geometric combination</i>; it is obtained via a mass transportation approach, playing with inverse distribution functions. The main feature of this operation is that the Lebesgue integral of the geometric combination equals the geometric mean of the two separate integrals; as a natural consequence, we derive a new functional inequality of Prékopa–Leindler type. When applied to the characteristic functions of two measurable sets, their geometric combination provides a set whose volume equals the geometric mean of the two separate volumes. In the framework of convex bodies, by comparing the geometric combination with the 0-sum, we get an alternative proof of the log-Brunn–Minkowski inequality for unconditional convex bodies and for convex bodies with <i>n</i> symmetries.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12192","citationCount":"1","resultStr":"{\"title\":\"On a geometric combination of functions related to Prékopa–Leindler inequality\",\"authors\":\"Graziano Crasta, Ilaria Fragalà\",\"doi\":\"10.1112/mtk.12192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new operation between nonnegative integrable functions on <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math>, that we call <i>geometric combination</i>; it is obtained via a mass transportation approach, playing with inverse distribution functions. The main feature of this operation is that the Lebesgue integral of the geometric combination equals the geometric mean of the two separate integrals; as a natural consequence, we derive a new functional inequality of Prékopa–Leindler type. When applied to the characteristic functions of two measurable sets, their geometric combination provides a set whose volume equals the geometric mean of the two separate volumes. In the framework of convex bodies, by comparing the geometric combination with the 0-sum, we get an alternative proof of the log-Brunn–Minkowski inequality for unconditional convex bodies and for convex bodies with <i>n</i> symmetries.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12192\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12192\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a geometric combination of functions related to Prékopa–Leindler inequality
We introduce a new operation between nonnegative integrable functions on , that we call geometric combination; it is obtained via a mass transportation approach, playing with inverse distribution functions. The main feature of this operation is that the Lebesgue integral of the geometric combination equals the geometric mean of the two separate integrals; as a natural consequence, we derive a new functional inequality of Prékopa–Leindler type. When applied to the characteristic functions of two measurable sets, their geometric combination provides a set whose volume equals the geometric mean of the two separate volumes. In the framework of convex bodies, by comparing the geometric combination with the 0-sum, we get an alternative proof of the log-Brunn–Minkowski inequality for unconditional convex bodies and for convex bodies with n symmetries.
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.