明胶基全生物发泡膜的制备与表征

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-01-07 DOI:10.1177/0262489319897632
J. Solorza-Feria, M. A. Ortiz-Zarama, A. Jiménez–Aparicio, D. Rodrigue
{"title":"明胶基全生物发泡膜的制备与表征","authors":"J. Solorza-Feria, M. A. Ortiz-Zarama, A. Jiménez–Aparicio, D. Rodrigue","doi":"10.1177/0262489319897632","DOIUrl":null,"url":null,"abstract":"The objective of this study was to produce and characterize gelatin foamed films using extrusion. Three “optimum” formulations containing tannic acid, nanoclays (Cloisite Na+), glycerol, water, and gelatin, as well as three “controls” without tannic acid and nanoclays were prepared by calendering. Furthermore, the three “optimum” formulations were produced by extrusion film blowing only, since no stable processing conditions could be obtained for the controls. A complete set of sample characterization was performed, including morphological, mechanical, physical, and thermal properties. The results showed that besides the processing method, the thickness was also controlled by the glycerol and water content, leading to density slightly above unity, with higher values for the optimum materials. The calendered films from the optimum formulations showed overall a higher number of cells and cell density than the controls. Higher elastic moduli and tensile strengths were obtained for the films from the optimum formulations made by either method because of the reinforcing effect of the tannic acid and nanoclays, but this led to lower strain at break. The thermal profiles were similar for all films, with higher stability for the optimum formulations. The results were also explained via chemical interactions between the components as observed by Fourier transform infrared spectroscopy. Overall, the optimum formulations not only produced better foamed films in terms of general properties but were much easier to process by both methods (calendering and blowing).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489319897632","citationCount":"3","resultStr":"{\"title\":\"Production and characterization of fully biobased foamed films based on gelatin\",\"authors\":\"J. Solorza-Feria, M. A. Ortiz-Zarama, A. Jiménez–Aparicio, D. Rodrigue\",\"doi\":\"10.1177/0262489319897632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study was to produce and characterize gelatin foamed films using extrusion. Three “optimum” formulations containing tannic acid, nanoclays (Cloisite Na+), glycerol, water, and gelatin, as well as three “controls” without tannic acid and nanoclays were prepared by calendering. Furthermore, the three “optimum” formulations were produced by extrusion film blowing only, since no stable processing conditions could be obtained for the controls. A complete set of sample characterization was performed, including morphological, mechanical, physical, and thermal properties. The results showed that besides the processing method, the thickness was also controlled by the glycerol and water content, leading to density slightly above unity, with higher values for the optimum materials. The calendered films from the optimum formulations showed overall a higher number of cells and cell density than the controls. Higher elastic moduli and tensile strengths were obtained for the films from the optimum formulations made by either method because of the reinforcing effect of the tannic acid and nanoclays, but this led to lower strain at break. The thermal profiles were similar for all films, with higher stability for the optimum formulations. The results were also explained via chemical interactions between the components as observed by Fourier transform infrared spectroscopy. Overall, the optimum formulations not only produced better foamed films in terms of general properties but were much easier to process by both methods (calendering and blowing).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0262489319897632\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0262489319897632\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489319897632","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是生产和表征明胶泡沫薄膜的挤压。通过压延法制备了含有单宁酸、纳米粘土(Cloisite Na+)、甘油、水和明胶的三种“最佳”配方,以及不含单宁酸和纳米粘土的三种“对照”配方。此外,三种“最佳”配方仅通过挤出吹膜生产,因为无法获得稳定的加工条件作为控制。完成了一套完整的样品表征,包括形态,机械,物理和热性能。结果表明,除加工方法外,厚度还受甘油和水分含量的控制,导致密度略高于1,最佳材料的密度值较高。最佳配方的压延膜总体上显示细胞数量和细胞密度高于对照。由于单宁酸和纳米粘土的增强作用,两种方法制备的最佳配方均获得了较高的弹性模量和抗拉强度,但这导致了较低的断裂应变。所有薄膜的热分布相似,最佳配方具有较高的稳定性。通过傅里叶变换红外光谱观察到的组分之间的化学相互作用也解释了这一结果。总的来说,最佳配方不仅在一般性能方面产生更好的泡沫薄膜,而且通过两种方法(压延和吹制)更容易加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production and characterization of fully biobased foamed films based on gelatin
The objective of this study was to produce and characterize gelatin foamed films using extrusion. Three “optimum” formulations containing tannic acid, nanoclays (Cloisite Na+), glycerol, water, and gelatin, as well as three “controls” without tannic acid and nanoclays were prepared by calendering. Furthermore, the three “optimum” formulations were produced by extrusion film blowing only, since no stable processing conditions could be obtained for the controls. A complete set of sample characterization was performed, including morphological, mechanical, physical, and thermal properties. The results showed that besides the processing method, the thickness was also controlled by the glycerol and water content, leading to density slightly above unity, with higher values for the optimum materials. The calendered films from the optimum formulations showed overall a higher number of cells and cell density than the controls. Higher elastic moduli and tensile strengths were obtained for the films from the optimum formulations made by either method because of the reinforcing effect of the tannic acid and nanoclays, but this led to lower strain at break. The thermal profiles were similar for all films, with higher stability for the optimum formulations. The results were also explained via chemical interactions between the components as observed by Fourier transform infrared spectroscopy. Overall, the optimum formulations not only produced better foamed films in terms of general properties but were much easier to process by both methods (calendering and blowing).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1