{"title":"海拔梯度不影响Limia属(鲤形目:水蛭科)活鱼种群局部尺度的耐热性。","authors":"Rodet Rodriguez‐Silva, I. Schlupp","doi":"10.33800/NC.VI18.264","DOIUrl":null,"url":null,"abstract":"One of the main assumptions of Janzen’s mountain passes hypothesis is that due the low overlap in temperature regimes between low and high elevations in the tropics, organisms living in high-altitude evolve narrow tolerance for colder temperatures while low-altitude species develop narrow tolerance for warmer temperatures. Some studies have questioned the generality of the assumptions and predictions of this hypothesis suggesting that other factors different to temperature gradients between low and high elevations may explain altitudinal distribution of species in the tropics. In this study we test some predictions of the Janzen’s hypothesis at local scales through the analysis of the individual thermal niche breadth in populations of livebearing fishes of the genus Limia and its relationship with their altitudinal distribution in some islands of the Greater Antilles. We assessed variation in tolerance to extreme temperatures (measured as critical thermal minimum (CTmin) and maximum (CTmax) and compared thermal breadth for populations of eight species of Limia occurring in three Caribbean islands and that occupy different altitudinal distribution. Our results showed that species analyzed had significant differences in thermal limits and ranges. Generally, species distributed in high and low elevations did not differ in thermal limits and showed a wider range of thermal tolerance. However, species living in mid-elevations had narrower range of temperature tolerance. We found no significant effect of phylogeny on CTmin, CTmax and thermal ranges among species. This study did not provide evidence supporting Janzen’s hypothesis at a local scale since thermal tolerance and altitudinal distribution of Limia species were not related to temperature gradients expected in nature. Phylogeny also did not explain the patterns we observed. We suggest that biotic factors such as species interactions, diet specializations, and others should be considered when interpreting current distribution patterns of Limia species.","PeriodicalId":33102,"journal":{"name":"NOVITATES CARIBAEA","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elevational gradients do not affect thermal tolerance at local scale in populations of livebearing fishes of the genus Limia (Cyprinodontiformes: Poeciliinae)\",\"authors\":\"Rodet Rodriguez‐Silva, I. Schlupp\",\"doi\":\"10.33800/NC.VI18.264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main assumptions of Janzen’s mountain passes hypothesis is that due the low overlap in temperature regimes between low and high elevations in the tropics, organisms living in high-altitude evolve narrow tolerance for colder temperatures while low-altitude species develop narrow tolerance for warmer temperatures. Some studies have questioned the generality of the assumptions and predictions of this hypothesis suggesting that other factors different to temperature gradients between low and high elevations may explain altitudinal distribution of species in the tropics. In this study we test some predictions of the Janzen’s hypothesis at local scales through the analysis of the individual thermal niche breadth in populations of livebearing fishes of the genus Limia and its relationship with their altitudinal distribution in some islands of the Greater Antilles. We assessed variation in tolerance to extreme temperatures (measured as critical thermal minimum (CTmin) and maximum (CTmax) and compared thermal breadth for populations of eight species of Limia occurring in three Caribbean islands and that occupy different altitudinal distribution. Our results showed that species analyzed had significant differences in thermal limits and ranges. Generally, species distributed in high and low elevations did not differ in thermal limits and showed a wider range of thermal tolerance. However, species living in mid-elevations had narrower range of temperature tolerance. We found no significant effect of phylogeny on CTmin, CTmax and thermal ranges among species. This study did not provide evidence supporting Janzen’s hypothesis at a local scale since thermal tolerance and altitudinal distribution of Limia species were not related to temperature gradients expected in nature. Phylogeny also did not explain the patterns we observed. We suggest that biotic factors such as species interactions, diet specializations, and others should be considered when interpreting current distribution patterns of Limia species.\",\"PeriodicalId\":33102,\"journal\":{\"name\":\"NOVITATES CARIBAEA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOVITATES CARIBAEA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33800/NC.VI18.264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOVITATES CARIBAEA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33800/NC.VI18.264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ZOOLOGY","Score":null,"Total":0}
Elevational gradients do not affect thermal tolerance at local scale in populations of livebearing fishes of the genus Limia (Cyprinodontiformes: Poeciliinae)
One of the main assumptions of Janzen’s mountain passes hypothesis is that due the low overlap in temperature regimes between low and high elevations in the tropics, organisms living in high-altitude evolve narrow tolerance for colder temperatures while low-altitude species develop narrow tolerance for warmer temperatures. Some studies have questioned the generality of the assumptions and predictions of this hypothesis suggesting that other factors different to temperature gradients between low and high elevations may explain altitudinal distribution of species in the tropics. In this study we test some predictions of the Janzen’s hypothesis at local scales through the analysis of the individual thermal niche breadth in populations of livebearing fishes of the genus Limia and its relationship with their altitudinal distribution in some islands of the Greater Antilles. We assessed variation in tolerance to extreme temperatures (measured as critical thermal minimum (CTmin) and maximum (CTmax) and compared thermal breadth for populations of eight species of Limia occurring in three Caribbean islands and that occupy different altitudinal distribution. Our results showed that species analyzed had significant differences in thermal limits and ranges. Generally, species distributed in high and low elevations did not differ in thermal limits and showed a wider range of thermal tolerance. However, species living in mid-elevations had narrower range of temperature tolerance. We found no significant effect of phylogeny on CTmin, CTmax and thermal ranges among species. This study did not provide evidence supporting Janzen’s hypothesis at a local scale since thermal tolerance and altitudinal distribution of Limia species were not related to temperature gradients expected in nature. Phylogeny also did not explain the patterns we observed. We suggest that biotic factors such as species interactions, diet specializations, and others should be considered when interpreting current distribution patterns of Limia species.