一种基于学习的完全未知非线性系统事件触发保成本控制方法

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Transactions of the Institute of Measurement and Control Pub Date : 2023-08-10 DOI:10.1177/01423312231185383
Yuling Liang, Jun Zhang, Hui Zhao, Hanguang Su, Xiaohong Cui
{"title":"一种基于学习的完全未知非线性系统事件触发保成本控制方法","authors":"Yuling Liang, Jun Zhang, Hui Zhao, Hanguang Su, Xiaohong Cui","doi":"10.1177/01423312231185383","DOIUrl":null,"url":null,"abstract":"This paper develops a novel guaranteed cost control (GCC) approach under the event-triggered mechanism for completely unknown systems using integral reinforcement learning (IRL) algorithm. First, based on the adaptive dynamic programming (ADP) method, the GCC problem is addressed by transforming it into the optimal control problem. Second, without using the accurate information of system dynamics, a model-free data-based GCC approach is designed via IRL algorithm. Moreover, for the purpose of reducing the waste of communication resources, a GCC algorithm is presented under the event-triggered mechanism for completely unknown system by utilizing the explorized IRL algorithm. The critic–actor–disturbance neural networks (NNs) are applied to approximate near optimal solution. In addition, the weight estimations of NNs are tuned synchronously according to the designed novel triggering condition. Furthermore, the stability analysis of the controlled system is given by utilizing the Lyapunov principle. Finally, the simulation results are presented to verify the feasibility of the designed approach.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A learning-based approach to event-triggered guaranteed cost control for completely unknown nonlinear systems\",\"authors\":\"Yuling Liang, Jun Zhang, Hui Zhao, Hanguang Su, Xiaohong Cui\",\"doi\":\"10.1177/01423312231185383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a novel guaranteed cost control (GCC) approach under the event-triggered mechanism for completely unknown systems using integral reinforcement learning (IRL) algorithm. First, based on the adaptive dynamic programming (ADP) method, the GCC problem is addressed by transforming it into the optimal control problem. Second, without using the accurate information of system dynamics, a model-free data-based GCC approach is designed via IRL algorithm. Moreover, for the purpose of reducing the waste of communication resources, a GCC algorithm is presented under the event-triggered mechanism for completely unknown system by utilizing the explorized IRL algorithm. The critic–actor–disturbance neural networks (NNs) are applied to approximate near optimal solution. In addition, the weight estimations of NNs are tuned synchronously according to the designed novel triggering condition. Furthermore, the stability analysis of the controlled system is given by utilizing the Lyapunov principle. Finally, the simulation results are presented to verify the feasibility of the designed approach.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231185383\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312231185383","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用积分强化学习(IRL)算法,提出了一种基于事件触发机制的完全未知系统保成本控制方法。首先,基于自适应动态规划(ADP)方法,将GCC问题转化为最优控制问题。其次,在不使用系统动力学准确信息的情况下,通过IRL算法设计了一种基于无模型数据的GCC方法。此外,为了减少通信资源的浪费,利用探索的IRL算法,提出了一种完全未知系统的事件触发机制下的GCC算法。将临界因子干扰神经网络应用于逼近近最优解。此外,根据设计的新触发条件同步调整神经网络的权值估计。利用李雅普诺夫原理对被控系统进行了稳定性分析。最后给出了仿真结果,验证了所设计方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A learning-based approach to event-triggered guaranteed cost control for completely unknown nonlinear systems
This paper develops a novel guaranteed cost control (GCC) approach under the event-triggered mechanism for completely unknown systems using integral reinforcement learning (IRL) algorithm. First, based on the adaptive dynamic programming (ADP) method, the GCC problem is addressed by transforming it into the optimal control problem. Second, without using the accurate information of system dynamics, a model-free data-based GCC approach is designed via IRL algorithm. Moreover, for the purpose of reducing the waste of communication resources, a GCC algorithm is presented under the event-triggered mechanism for completely unknown system by utilizing the explorized IRL algorithm. The critic–actor–disturbance neural networks (NNs) are applied to approximate near optimal solution. In addition, the weight estimations of NNs are tuned synchronously according to the designed novel triggering condition. Furthermore, the stability analysis of the controlled system is given by utilizing the Lyapunov principle. Finally, the simulation results are presented to verify the feasibility of the designed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
203
审稿时长
3.4 months
期刊介绍: Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.
期刊最新文献
Quantized guaranteed cost dynamic output feedback control for uncertain nonlinear networked systems with external disturbance Event-triggered control of switched 2D continuous-discrete systems Prescribed-time leader-following consensus and containment control for second-order multiagent systems with only position measurements Distributed nonsingular terminal sliding mode control–based RBFNN for heterogeneous vehicular platoons with input saturation Event-triggered adaptive command-filtered trajectory tracking control for underactuated surface vessels based on multivariate finite-time disturbance observer under actuator faults and input saturation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1