{"title":"点对点,简单或复杂:形状重建算法综述","authors":"Farnaz Sheikhi, Behnam Zeraatkar, Sama Hanaie","doi":"10.1007/s00236-023-00443-7","DOIUrl":null,"url":null,"abstract":"<div><p><i>Dot pattern</i> points are the samples taken from all regions of a 2D object, either inside or the boundary. Given a set of dot pattern points in the plane, the <i>shape reconstruction</i> problem seeks to find the boundaries of the points. These boundaries are not mathematically well-defined. Hence, a superior algorithm is the one which produces the result closest to the human visual perception. There are different challenges in designing these algorithms, such as the independence from human supervision, and the ability to detect multiple components, holes and sharp corners. In this paper, we present a thorough review on the rich body of research in shape reconstruction, classify the ideas behind the algorithms, and highlight their pros and cons. Moreover, to overcome the barriers of implementing these algorithms, we provide an integrated application to visualize the outputs of the prominent algorithms for further comparison.\n</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"60 4","pages":"335 - 359"},"PeriodicalIF":0.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dot to dot, simple or sophisticated: a survey on shape reconstruction algorithms\",\"authors\":\"Farnaz Sheikhi, Behnam Zeraatkar, Sama Hanaie\",\"doi\":\"10.1007/s00236-023-00443-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Dot pattern</i> points are the samples taken from all regions of a 2D object, either inside or the boundary. Given a set of dot pattern points in the plane, the <i>shape reconstruction</i> problem seeks to find the boundaries of the points. These boundaries are not mathematically well-defined. Hence, a superior algorithm is the one which produces the result closest to the human visual perception. There are different challenges in designing these algorithms, such as the independence from human supervision, and the ability to detect multiple components, holes and sharp corners. In this paper, we present a thorough review on the rich body of research in shape reconstruction, classify the ideas behind the algorithms, and highlight their pros and cons. Moreover, to overcome the barriers of implementing these algorithms, we provide an integrated application to visualize the outputs of the prominent algorithms for further comparison.\\n</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"60 4\",\"pages\":\"335 - 359\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-023-00443-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-023-00443-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dot to dot, simple or sophisticated: a survey on shape reconstruction algorithms
Dot pattern points are the samples taken from all regions of a 2D object, either inside or the boundary. Given a set of dot pattern points in the plane, the shape reconstruction problem seeks to find the boundaries of the points. These boundaries are not mathematically well-defined. Hence, a superior algorithm is the one which produces the result closest to the human visual perception. There are different challenges in designing these algorithms, such as the independence from human supervision, and the ability to detect multiple components, holes and sharp corners. In this paper, we present a thorough review on the rich body of research in shape reconstruction, classify the ideas behind the algorithms, and highlight their pros and cons. Moreover, to overcome the barriers of implementing these algorithms, we provide an integrated application to visualize the outputs of the prominent algorithms for further comparison.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.