用高置信度数据编程评估报警分类器

Sydney Pugh, I. Ruchkin, Christopher P. Bonafide, S. Demauro, O. Sokolsky, Insup Lee, James Weimer
{"title":"用高置信度数据编程评估报警分类器","authors":"Sydney Pugh, I. Ruchkin, Christopher P. Bonafide, S. Demauro, O. Sokolsky, Insup Lee, James Weimer","doi":"10.1145/3549942","DOIUrl":null,"url":null,"abstract":"Classification of clinical alarms is at the heart of prioritization, suppression, integration, postponement, and other methods of mitigating alarm fatigue. Since these methods directly affect clinical care, alarm classifiers, such as intelligent suppression systems, need to be evaluated in terms of their sensitivity and specificity, which is typically calculated on a labeled dataset of alarms. Unfortunately, the collection and particularly labeling of such datasets requires substantial effort and time, thus deterring hospitals from investigating mitigations of alarm fatigue. This article develops a lightweight method for evaluating alarm classifiers without perfect alarm labels. The method relies on probabilistic labels obtained from data programming—a labeling paradigm based on combining noisy and cheap-to-obtain labeling heuristics. Based on these labels, the method produces confidence bounds for the sensitivity/specificity values from a hypothetical evaluation with manual labeling. Our experiments on five alarm datasets collected at Children’s Hospital of Philadelphia show that the proposed method provides accurate bounds on the classifier’s sensitivity/specificity, appropriately reflecting the uncertainty from noisy labeling and limited sample sizes.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"3 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluating Alarm Classifiers with High-confidence Data Programming\",\"authors\":\"Sydney Pugh, I. Ruchkin, Christopher P. Bonafide, S. Demauro, O. Sokolsky, Insup Lee, James Weimer\",\"doi\":\"10.1145/3549942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of clinical alarms is at the heart of prioritization, suppression, integration, postponement, and other methods of mitigating alarm fatigue. Since these methods directly affect clinical care, alarm classifiers, such as intelligent suppression systems, need to be evaluated in terms of their sensitivity and specificity, which is typically calculated on a labeled dataset of alarms. Unfortunately, the collection and particularly labeling of such datasets requires substantial effort and time, thus deterring hospitals from investigating mitigations of alarm fatigue. This article develops a lightweight method for evaluating alarm classifiers without perfect alarm labels. The method relies on probabilistic labels obtained from data programming—a labeling paradigm based on combining noisy and cheap-to-obtain labeling heuristics. Based on these labels, the method produces confidence bounds for the sensitivity/specificity values from a hypothetical evaluation with manual labeling. Our experiments on five alarm datasets collected at Children’s Hospital of Philadelphia show that the proposed method provides accurate bounds on the classifier’s sensitivity/specificity, appropriately reflecting the uncertainty from noisy labeling and limited sample sizes.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"3 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

临床警报的分类是优先级、抑制、整合、延迟和其他缓解警报疲劳方法的核心。由于这些方法直接影响临床护理,因此需要根据其灵敏度和特异性来评估警报分类器,如智能抑制系统,这通常是在标记的警报数据集上计算的。不幸的是,这些数据集的收集,特别是标记需要大量的精力和时间,因此阻碍了医院调查警报疲劳的缓解措施。本文开发了一种轻量级的方法来评估没有完美警报标签的警报分类器。该方法依赖于从数据编程中获得的概率标签——这是一种基于将噪声和廉价相结合来获得标签启发式的标签范式。基于这些标签,该方法通过手动标签的假设评估产生灵敏度/特异性值的置信界限。我们在费城儿童医院收集的五个警报数据集上的实验表明,所提出的方法为分类器的灵敏度/特异性提供了准确的界限,适当地反映了噪声标记和有限样本量的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Alarm Classifiers with High-confidence Data Programming
Classification of clinical alarms is at the heart of prioritization, suppression, integration, postponement, and other methods of mitigating alarm fatigue. Since these methods directly affect clinical care, alarm classifiers, such as intelligent suppression systems, need to be evaluated in terms of their sensitivity and specificity, which is typically calculated on a labeled dataset of alarms. Unfortunately, the collection and particularly labeling of such datasets requires substantial effort and time, thus deterring hospitals from investigating mitigations of alarm fatigue. This article develops a lightweight method for evaluating alarm classifiers without perfect alarm labels. The method relies on probabilistic labels obtained from data programming—a labeling paradigm based on combining noisy and cheap-to-obtain labeling heuristics. Based on these labels, the method produces confidence bounds for the sensitivity/specificity values from a hypothetical evaluation with manual labeling. Our experiments on five alarm datasets collected at Children’s Hospital of Philadelphia show that the proposed method provides accurate bounds on the classifier’s sensitivity/specificity, appropriately reflecting the uncertainty from noisy labeling and limited sample sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1