Reinhard Gerstner, Christine Fey, Erik Kuschel, Gerald Valentin, Klaus Voit, Christian Zangerl
{"title":"多相岩质边坡破坏受既有地质构造和岩桥控制","authors":"Reinhard Gerstner, Christine Fey, Erik Kuschel, Gerald Valentin, Klaus Voit, Christian Zangerl","doi":"10.1007/s10064-023-03382-2","DOIUrl":null,"url":null,"abstract":"<div><p>Even after decades of intensive research, assessing rock slope stability remains a challenge. One reason for this is the spatial variability of rock bridges (RBs) related to non-persistent, pre-existing geological structures, especially as the detection of RBs is generally limited to the post-failure period. Thus, the identification and classification of RBs and their inclusion in numerical studies are demanding, yet essential, since even small quantities of RBs can be decisive for rock slope stability. In our study, we demonstrate how brittle RB failure and pre-existing geological structures control the mechanisms of a polyphase rock slope failure. Therefore, we present a case study in the Austrian Alps, where three rock falls with a failure volume of 30,000 m<sup>3</sup> occurred in 2019. Based on detailed process reconstructions, high-resolution terrain models, and comprehensive geological and rock mechanical investigations, we derived high-quality input for our distinct element model (DEM). By applying asymmetric Voronoi tessellation in the DEM, we modelled the coalescence of pre-existing geological structures by brittle RB failure. As a result, we identified toppling as the predominant failure mechanism at the study site. Distinctive geological structures decisively affected the failure mechanism. However, the toppling failure was only reproducible by incorporating RBs in the DEM in their pre-failure position. Finally, we found that joint persistence, and consequently the presence of potential RBs, controls which initial rock fall failure mechanism was developed. In conclusion, we state that the initial toppling failure of the Hüttschlag rock falls is controlled by non-persistent geological structures in interplay with RBs.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"82 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-023-03382-2.pdf","citationCount":"1","resultStr":"{\"title\":\"Polyphase rock slope failure controlled by pre-existing geological structures and rock bridges\",\"authors\":\"Reinhard Gerstner, Christine Fey, Erik Kuschel, Gerald Valentin, Klaus Voit, Christian Zangerl\",\"doi\":\"10.1007/s10064-023-03382-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Even after decades of intensive research, assessing rock slope stability remains a challenge. One reason for this is the spatial variability of rock bridges (RBs) related to non-persistent, pre-existing geological structures, especially as the detection of RBs is generally limited to the post-failure period. Thus, the identification and classification of RBs and their inclusion in numerical studies are demanding, yet essential, since even small quantities of RBs can be decisive for rock slope stability. In our study, we demonstrate how brittle RB failure and pre-existing geological structures control the mechanisms of a polyphase rock slope failure. Therefore, we present a case study in the Austrian Alps, where three rock falls with a failure volume of 30,000 m<sup>3</sup> occurred in 2019. Based on detailed process reconstructions, high-resolution terrain models, and comprehensive geological and rock mechanical investigations, we derived high-quality input for our distinct element model (DEM). By applying asymmetric Voronoi tessellation in the DEM, we modelled the coalescence of pre-existing geological structures by brittle RB failure. As a result, we identified toppling as the predominant failure mechanism at the study site. Distinctive geological structures decisively affected the failure mechanism. However, the toppling failure was only reproducible by incorporating RBs in the DEM in their pre-failure position. Finally, we found that joint persistence, and consequently the presence of potential RBs, controls which initial rock fall failure mechanism was developed. In conclusion, we state that the initial toppling failure of the Hüttschlag rock falls is controlled by non-persistent geological structures in interplay with RBs.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"82 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10064-023-03382-2.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-023-03382-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-023-03382-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Polyphase rock slope failure controlled by pre-existing geological structures and rock bridges
Even after decades of intensive research, assessing rock slope stability remains a challenge. One reason for this is the spatial variability of rock bridges (RBs) related to non-persistent, pre-existing geological structures, especially as the detection of RBs is generally limited to the post-failure period. Thus, the identification and classification of RBs and their inclusion in numerical studies are demanding, yet essential, since even small quantities of RBs can be decisive for rock slope stability. In our study, we demonstrate how brittle RB failure and pre-existing geological structures control the mechanisms of a polyphase rock slope failure. Therefore, we present a case study in the Austrian Alps, where three rock falls with a failure volume of 30,000 m3 occurred in 2019. Based on detailed process reconstructions, high-resolution terrain models, and comprehensive geological and rock mechanical investigations, we derived high-quality input for our distinct element model (DEM). By applying asymmetric Voronoi tessellation in the DEM, we modelled the coalescence of pre-existing geological structures by brittle RB failure. As a result, we identified toppling as the predominant failure mechanism at the study site. Distinctive geological structures decisively affected the failure mechanism. However, the toppling failure was only reproducible by incorporating RBs in the DEM in their pre-failure position. Finally, we found that joint persistence, and consequently the presence of potential RBs, controls which initial rock fall failure mechanism was developed. In conclusion, we state that the initial toppling failure of the Hüttschlag rock falls is controlled by non-persistent geological structures in interplay with RBs.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.