Dongjun Liu, Jin Cui, Zeyu Pan, Hangkui Zhang, Jianting Cao, Wanzeng Kong
{"title":"机器到大脑:使用大脑机器生成对抗网络的面部表情识别","authors":"Dongjun Liu, Jin Cui, Zeyu Pan, Hangkui Zhang, Jianting Cao, Wanzeng Kong","doi":"10.1007/s11571-023-09946-y","DOIUrl":null,"url":null,"abstract":"<p><p>The human brain can effectively perform Facial Expression Recognition (FER) with a few samples by utilizing its cognitive ability. However, unlike the human brain, even the well-trained deep neural network is data-dependent and lacks cognitive ability. To tackle this challenge, this paper proposes a novel framework, Brain Machine Generative Adversarial Networks (BM-GAN), which utilizes the concept of brain's cognitive ability to guide a Convolutional Neural Network to generate LIKE-electroencephalograph (EEG) features. More specifically, we firstly obtain EEG signals triggered from facial emotion images, then we adopt BM-GAN to carry out the mutual generation of image visual features and EEG cognitive features. BM-GAN intends to use the cognitive knowledge learnt from EEG signals to instruct the model to perceive LIKE-EEG features. Thereby, BM-GAN has a superior performance for FER like the human brain. The proposed model consists of VisualNet, EEGNet, and BM-GAN. More specifically, VisualNet can obtain image visual features from facial emotion images and EEGNet can obtain EEG cognitive features from EEG signals. Subsequently, the BM-GAN completes the mutual generation of image visual features and EEG cognitive features. Finally, the predicted LIKE-EEG features of test images are used for FER. After learning, without the participation of the EEG signals, an average classification accuracy of 96.6 % is obtained on Chinese Facial Affective Picture System dataset using LIKE-EEG features for FER. Experiments demonstrate that the proposed method can produce an excellent performance for FER.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine to brain: facial expression recognition using brain machine generative adversarial networks.\",\"authors\":\"Dongjun Liu, Jin Cui, Zeyu Pan, Hangkui Zhang, Jianting Cao, Wanzeng Kong\",\"doi\":\"10.1007/s11571-023-09946-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human brain can effectively perform Facial Expression Recognition (FER) with a few samples by utilizing its cognitive ability. However, unlike the human brain, even the well-trained deep neural network is data-dependent and lacks cognitive ability. To tackle this challenge, this paper proposes a novel framework, Brain Machine Generative Adversarial Networks (BM-GAN), which utilizes the concept of brain's cognitive ability to guide a Convolutional Neural Network to generate LIKE-electroencephalograph (EEG) features. More specifically, we firstly obtain EEG signals triggered from facial emotion images, then we adopt BM-GAN to carry out the mutual generation of image visual features and EEG cognitive features. BM-GAN intends to use the cognitive knowledge learnt from EEG signals to instruct the model to perceive LIKE-EEG features. Thereby, BM-GAN has a superior performance for FER like the human brain. The proposed model consists of VisualNet, EEGNet, and BM-GAN. More specifically, VisualNet can obtain image visual features from facial emotion images and EEGNet can obtain EEG cognitive features from EEG signals. Subsequently, the BM-GAN completes the mutual generation of image visual features and EEG cognitive features. Finally, the predicted LIKE-EEG features of test images are used for FER. After learning, without the participation of the EEG signals, an average classification accuracy of 96.6 % is obtained on Chinese Facial Affective Picture System dataset using LIKE-EEG features for FER. Experiments demonstrate that the proposed method can produce an excellent performance for FER.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09946-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09946-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Machine to brain: facial expression recognition using brain machine generative adversarial networks.
The human brain can effectively perform Facial Expression Recognition (FER) with a few samples by utilizing its cognitive ability. However, unlike the human brain, even the well-trained deep neural network is data-dependent and lacks cognitive ability. To tackle this challenge, this paper proposes a novel framework, Brain Machine Generative Adversarial Networks (BM-GAN), which utilizes the concept of brain's cognitive ability to guide a Convolutional Neural Network to generate LIKE-electroencephalograph (EEG) features. More specifically, we firstly obtain EEG signals triggered from facial emotion images, then we adopt BM-GAN to carry out the mutual generation of image visual features and EEG cognitive features. BM-GAN intends to use the cognitive knowledge learnt from EEG signals to instruct the model to perceive LIKE-EEG features. Thereby, BM-GAN has a superior performance for FER like the human brain. The proposed model consists of VisualNet, EEGNet, and BM-GAN. More specifically, VisualNet can obtain image visual features from facial emotion images and EEGNet can obtain EEG cognitive features from EEG signals. Subsequently, the BM-GAN completes the mutual generation of image visual features and EEG cognitive features. Finally, the predicted LIKE-EEG features of test images are used for FER. After learning, without the participation of the EEG signals, an average classification accuracy of 96.6 % is obtained on Chinese Facial Affective Picture System dataset using LIKE-EEG features for FER. Experiments demonstrate that the proposed method can produce an excellent performance for FER.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.