S. C. Ülgen, Nalan Lom, G. Sunal, A. Gerdes, A. Şengör
{"title":"Strandja地块和İstanbul带曾经是同一个古构造单元的一部分:来自三叠纪碎屑锆石的新数据","authors":"S. C. Ülgen, Nalan Lom, G. Sunal, A. Gerdes, A. Şengör","doi":"10.1080/09853111.2018.1475447","DOIUrl":null,"url":null,"abstract":"ABSTRACT Spatially continuous rock assemblages that share similar environmental evolution or structural features can be classified as a single tectonic unit. This approach enables to link dispersed units or massifs with each other and sometimes can be subjective, depending on the classification criteria. The relationship and the nature of the contact between the Strandja Massif and the İstanbul Zone have been controversial due to the Cainozoic cover. Amalgamation of these units was claimed as early as the Aptian-Albian. Lower Triassic sedimentary rocks, which are overlain by the Carboniferous flysch with a N-verging thrust fault are exposed NW of the İstanbul Zone. This study reveals the spatial relationship between the Strandja Massif and the İstanbul Zone deduced from the U-Pb dating and Lu-Hf isotopes of the detrital zircons from these Lower Triassic clastics. Our results show that the early Triassic basin was fed from a provenance that included arc-related Upper Carboniferous-Lower Permian magmatic rocks which is much more likely to be the Strandja Massif than the İstanbul Zone. The second outcome of this study is that a unit that previously assigned to Palaeozoic turned out to be Triassic, which brings the Strandja Massif farther to the east, into the northern İstanbul Zone.","PeriodicalId":50420,"journal":{"name":"Geodinamica Acta","volume":"30 1","pages":"212 - 224"},"PeriodicalIF":1.5000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09853111.2018.1475447","citationCount":"9","resultStr":"{\"title\":\"The Strandja Massif and the İstanbul Zone were once parts of the same palaeotectonic unit: new data from Triassic detrital zircons\",\"authors\":\"S. C. Ülgen, Nalan Lom, G. Sunal, A. Gerdes, A. Şengör\",\"doi\":\"10.1080/09853111.2018.1475447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Spatially continuous rock assemblages that share similar environmental evolution or structural features can be classified as a single tectonic unit. This approach enables to link dispersed units or massifs with each other and sometimes can be subjective, depending on the classification criteria. The relationship and the nature of the contact between the Strandja Massif and the İstanbul Zone have been controversial due to the Cainozoic cover. Amalgamation of these units was claimed as early as the Aptian-Albian. Lower Triassic sedimentary rocks, which are overlain by the Carboniferous flysch with a N-verging thrust fault are exposed NW of the İstanbul Zone. This study reveals the spatial relationship between the Strandja Massif and the İstanbul Zone deduced from the U-Pb dating and Lu-Hf isotopes of the detrital zircons from these Lower Triassic clastics. Our results show that the early Triassic basin was fed from a provenance that included arc-related Upper Carboniferous-Lower Permian magmatic rocks which is much more likely to be the Strandja Massif than the İstanbul Zone. The second outcome of this study is that a unit that previously assigned to Palaeozoic turned out to be Triassic, which brings the Strandja Massif farther to the east, into the northern İstanbul Zone.\",\"PeriodicalId\":50420,\"journal\":{\"name\":\"Geodinamica Acta\",\"volume\":\"30 1\",\"pages\":\"212 - 224\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09853111.2018.1475447\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodinamica Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09853111.2018.1475447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodinamica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09853111.2018.1475447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
The Strandja Massif and the İstanbul Zone were once parts of the same palaeotectonic unit: new data from Triassic detrital zircons
ABSTRACT Spatially continuous rock assemblages that share similar environmental evolution or structural features can be classified as a single tectonic unit. This approach enables to link dispersed units or massifs with each other and sometimes can be subjective, depending on the classification criteria. The relationship and the nature of the contact between the Strandja Massif and the İstanbul Zone have been controversial due to the Cainozoic cover. Amalgamation of these units was claimed as early as the Aptian-Albian. Lower Triassic sedimentary rocks, which are overlain by the Carboniferous flysch with a N-verging thrust fault are exposed NW of the İstanbul Zone. This study reveals the spatial relationship between the Strandja Massif and the İstanbul Zone deduced from the U-Pb dating and Lu-Hf isotopes of the detrital zircons from these Lower Triassic clastics. Our results show that the early Triassic basin was fed from a provenance that included arc-related Upper Carboniferous-Lower Permian magmatic rocks which is much more likely to be the Strandja Massif than the İstanbul Zone. The second outcome of this study is that a unit that previously assigned to Palaeozoic turned out to be Triassic, which brings the Strandja Massif farther to the east, into the northern İstanbul Zone.
期刊介绍:
Geodinamica Acta provides an international and interdisciplinary forum for the publication of results of recent research dealing with both internal and external geodynamics. Its aims to promote discussion between the various disciplines that work on the dynamics of the lithosphere and hydrosphere. There are no constraints over themes, provided the main thrust of the paper relates to Earth''s internal and external geodynamics. The Journal encourages the submission of papers in all fields of earth sciences, such as biostratigraphy, geochemistry, geochronology and thermochronology, geohazards and their societal impacts, geomorphology, geophysics, glaciology, igneous and metamorphic petrology, magmatism, marine geology, metamorphism, mineral-deposits and energy resources, mineralogy, orogeny, palaeoclimatology, palaeoecology, paleoceanograpgy, palaeontology, petroleum geology, sedimentology, seismology and earthquakes, stratigraphy, structural geology, surface processes, tectonics (neoteoctonic, plate tectonics, seismo-tectonics, Active tectonics) and volcanism.
Geodinamica Acta publishes high quality, peer-reviewed original and timely scientific papers, comprehensive review articles on hot topics of current interest, rapid communications relating to a significant advance in the earth sciences with broad interest, and discussions of papers that have already appeared in recent issues of the journal. Book reviews are also included. Submitted papers must have international appeal and regional implications; they should present work that would be of interest to many different specialists. Geographic coverage is global and work on any part of the world is considered. The Journal also publishes thematic sets of papers on topical aspects of earth sciences or special issues of selected papers from conferences.