MACSum:混合属性的可控摘要

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Transactions of the Association for Computational Linguistics Pub Date : 2022-11-09 DOI:10.1162/tacl_a_00575
Yusen Zhang, Yang Liu, Ziyi Yang, Yuwei Fang, Yulong Chen, Dragomir R. Radev, Chenguang Zhu, Michael Zeng, Rui Zhang
{"title":"MACSum:混合属性的可控摘要","authors":"Yusen Zhang, Yang Liu, Ziyi Yang, Yuwei Fang, Yulong Chen, Dragomir R. Radev, Chenguang Zhu, Michael Zeng, Rui Zhang","doi":"10.1162/tacl_a_00575","DOIUrl":null,"url":null,"abstract":"Abstract Controllable summarization allows users to generate customized summaries with specified attributes. However, due to the lack of designated annotations of controlled summaries, existing work has to craft pseudo datasets by adapting generic summarization benchmarks. Furthermore, most research focuses on controlling single attributes individually (e.g., a short summary or a highly abstractive summary) rather than controlling a mix of attributes together (e.g., a short and highly abstractive summary). In this paper, we propose MACSum, the first human-annotated summarization dataset for controlling mixed attributes. It contains source texts from two domains, news articles and dialogues, with human-annotated summaries controlled by five designed attributes (Length, Extractiveness, Specificity, Topic, and Speaker). We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning. Results and analysis demonstrate that hard prompt models yield the best performance on most metrics and human evaluations. However, mixed-attribute control is still challenging for summarization tasks. Our dataset and code are available at https://github.com/psunlpgroup/MACSum.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"787-803"},"PeriodicalIF":4.2000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MACSum: Controllable Summarization with Mixed Attributes\",\"authors\":\"Yusen Zhang, Yang Liu, Ziyi Yang, Yuwei Fang, Yulong Chen, Dragomir R. Radev, Chenguang Zhu, Michael Zeng, Rui Zhang\",\"doi\":\"10.1162/tacl_a_00575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Controllable summarization allows users to generate customized summaries with specified attributes. However, due to the lack of designated annotations of controlled summaries, existing work has to craft pseudo datasets by adapting generic summarization benchmarks. Furthermore, most research focuses on controlling single attributes individually (e.g., a short summary or a highly abstractive summary) rather than controlling a mix of attributes together (e.g., a short and highly abstractive summary). In this paper, we propose MACSum, the first human-annotated summarization dataset for controlling mixed attributes. It contains source texts from two domains, news articles and dialogues, with human-annotated summaries controlled by five designed attributes (Length, Extractiveness, Specificity, Topic, and Speaker). We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning. Results and analysis demonstrate that hard prompt models yield the best performance on most metrics and human evaluations. However, mixed-attribute control is still challenging for summarization tasks. Our dataset and code are available at https://github.com/psunlpgroup/MACSum.\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"11 1\",\"pages\":\"787-803\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00575\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00575","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6

摘要

摘要可控摘要允许用户生成具有指定属性的自定义摘要。然而,由于缺乏受控摘要的指定注释,现有的工作必须通过调整通用摘要基准来制作伪数据集。此外,大多数研究侧重于单独控制单个属性(例如,简短的摘要或高度抽象的摘要),而不是控制混合属性(例如,简短而高度抽象的摘要)。在本文中,我们提出了MACSum,这是第一个用于控制混合属性的人工注释摘要数据集。它包含来自两个领域的源文本,新闻文章和对话,以及由五个设计属性(Length, extractivity, Specificity, Topic和Speaker)控制的人工注释摘要。针对混合可控摘要的新任务,提出了两种简单有效的基于硬提示调谐和软前缀调谐的参数高效方法。结果和分析表明,硬提示模型在大多数指标和人工评估上产生最佳性能。然而,混合属性控制对于摘要任务来说仍然是一个挑战。我们的数据集和代码可在https://github.com/psunlpgroup/MACSum上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MACSum: Controllable Summarization with Mixed Attributes
Abstract Controllable summarization allows users to generate customized summaries with specified attributes. However, due to the lack of designated annotations of controlled summaries, existing work has to craft pseudo datasets by adapting generic summarization benchmarks. Furthermore, most research focuses on controlling single attributes individually (e.g., a short summary or a highly abstractive summary) rather than controlling a mix of attributes together (e.g., a short and highly abstractive summary). In this paper, we propose MACSum, the first human-annotated summarization dataset for controlling mixed attributes. It contains source texts from two domains, news articles and dialogues, with human-annotated summaries controlled by five designed attributes (Length, Extractiveness, Specificity, Topic, and Speaker). We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning. Results and analysis demonstrate that hard prompt models yield the best performance on most metrics and human evaluations. However, mixed-attribute control is still challenging for summarization tasks. Our dataset and code are available at https://github.com/psunlpgroup/MACSum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
期刊最新文献
General then Personal: Decoupling and Pre-training for Personalized Headline Generation MissModal: Increasing Robustness to Missing Modality in Multimodal Sentiment Analysis Removing Backdoors in Pre-trained Models by Regularized Continual Pre-training Learning More from Mixed Emotions: A Label Refinement Method for Emotion Recognition in Conversations An Efficient Self-Supervised Cross-View Training For Sentence Embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1