具有主导(流行)单元的空间自回归模型的QML和有效GMM估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-02-11 DOI:10.1080/07350015.2022.2041424
Lung-fei Lee, Chao Yang, Jihai Yu
{"title":"具有主导(流行)单元的空间自回归模型的QML和有效GMM估计","authors":"Lung-fei Lee, Chao Yang, Jihai Yu","doi":"10.1080/07350015.2022.2041424","DOIUrl":null,"url":null,"abstract":"Abstract This article investigates QML and GMM estimation of spatial autoregressive (SAR) models in which the column sums of the spatial weights matrix might not be uniformly bounded. We develop a central limit theorem in which the number of columns with unbounded sums can be finite or infinite and the magnitude of their column sums can be if . Asymptotic distributions of QML and GMM estimators are derived under this setting, including the GMM estimators with the best linear and quadratic moments when the disturbances are not normally distributed. The Monte Carlo experiments show that these QML and GMM estimators have satisfactory finite sample performances, while cases with a column sums magnitude of O(n) might not have satisfactory performance. An empirical application with growth convergence in which the trade flow network has the feature of dominant units is provided. Supplementary materials for this article are available online.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QML and Efficient GMM Estimation of Spatial Autoregressive Models with Dominant (Popular) Units\",\"authors\":\"Lung-fei Lee, Chao Yang, Jihai Yu\",\"doi\":\"10.1080/07350015.2022.2041424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article investigates QML and GMM estimation of spatial autoregressive (SAR) models in which the column sums of the spatial weights matrix might not be uniformly bounded. We develop a central limit theorem in which the number of columns with unbounded sums can be finite or infinite and the magnitude of their column sums can be if . Asymptotic distributions of QML and GMM estimators are derived under this setting, including the GMM estimators with the best linear and quadratic moments when the disturbances are not normally distributed. The Monte Carlo experiments show that these QML and GMM estimators have satisfactory finite sample performances, while cases with a column sums magnitude of O(n) might not have satisfactory performance. An empirical application with growth convergence in which the trade flow network has the feature of dominant units is provided. Supplementary materials for this article are available online.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2041424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2041424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了空间自回归(SAR)模型的QML和GMM估计,其中空间权重矩阵的列和可能不是一致有界的。我们发展了一个中心极限定理,其中具有无界和的列的数量可以是有限的或无限的,并且它们的列和的大小可以是if。在这种情况下,导出了QML和GMM估计量的渐近分布,包括扰动不正态分布时具有最佳线性矩和二次矩的GMM估计。蒙特卡罗实验表明,这些QML和GMM估计量具有令人满意的有限样本性能,而列和大小为O(n)的情况可能没有令人满意的性能。给出了贸易流网络具有优势单元特征的增长收敛的实证应用。本文的补充材料可在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QML and Efficient GMM Estimation of Spatial Autoregressive Models with Dominant (Popular) Units
Abstract This article investigates QML and GMM estimation of spatial autoregressive (SAR) models in which the column sums of the spatial weights matrix might not be uniformly bounded. We develop a central limit theorem in which the number of columns with unbounded sums can be finite or infinite and the magnitude of their column sums can be if . Asymptotic distributions of QML and GMM estimators are derived under this setting, including the GMM estimators with the best linear and quadratic moments when the disturbances are not normally distributed. The Monte Carlo experiments show that these QML and GMM estimators have satisfactory finite sample performances, while cases with a column sums magnitude of O(n) might not have satisfactory performance. An empirical application with growth convergence in which the trade flow network has the feature of dominant units is provided. Supplementary materials for this article are available online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1