{"title":"土-结构相互作用对DTU 10MW海上风力发电机导管架下部结构地震响应影响的建模","authors":"Ting-Yu Fan, Chin-Yu Lin, Chin-Cheng Huang","doi":"10.17736/ijope.2022.cl20","DOIUrl":null,"url":null,"abstract":"This paper is intended to study the influence of soil–structure interaction on the seismic response of jacket substructure for the Technical University of Denmark 10-MW reference wind turbine on the west coast of Taiwan. Since Taiwan is located in the circum-Pacific seismic belt, there is significant interest in assessing the behavior of a wind turbine subjected to seismic loading. Based on the flexible volume method, a finite element model was employed to quantify the contribution of foundation damping to overall damping of offshore wind turbines. The results show that foundation damping was estimated to contribute 1.28%–1.50% of critical damping to total offshore wind turbine damping. The soil–structure interaction effects have significant influence on seismic responses.","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Influence of Soil-Structure-Interaction on Seismic Response of Jacket Substructure for the DTU 10MW Offshore Wind Turbine\",\"authors\":\"Ting-Yu Fan, Chin-Yu Lin, Chin-Cheng Huang\",\"doi\":\"10.17736/ijope.2022.cl20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is intended to study the influence of soil–structure interaction on the seismic response of jacket substructure for the Technical University of Denmark 10-MW reference wind turbine on the west coast of Taiwan. Since Taiwan is located in the circum-Pacific seismic belt, there is significant interest in assessing the behavior of a wind turbine subjected to seismic loading. Based on the flexible volume method, a finite element model was employed to quantify the contribution of foundation damping to overall damping of offshore wind turbines. The results show that foundation damping was estimated to contribute 1.28%–1.50% of critical damping to total offshore wind turbine damping. The soil–structure interaction effects have significant influence on seismic responses.\",\"PeriodicalId\":50302,\"journal\":{\"name\":\"International Journal of Offshore and Polar Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Offshore and Polar Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17736/ijope.2022.cl20\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17736/ijope.2022.cl20","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Modeling the Influence of Soil-Structure-Interaction on Seismic Response of Jacket Substructure for the DTU 10MW Offshore Wind Turbine
This paper is intended to study the influence of soil–structure interaction on the seismic response of jacket substructure for the Technical University of Denmark 10-MW reference wind turbine on the west coast of Taiwan. Since Taiwan is located in the circum-Pacific seismic belt, there is significant interest in assessing the behavior of a wind turbine subjected to seismic loading. Based on the flexible volume method, a finite element model was employed to quantify the contribution of foundation damping to overall damping of offshore wind turbines. The results show that foundation damping was estimated to contribute 1.28%–1.50% of critical damping to total offshore wind turbine damping. The soil–structure interaction effects have significant influence on seismic responses.
期刊介绍:
The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world.
Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.