使用石柱的高铁过渡区

IF 1.6 Q3 ENGINEERING, CIVIL Australian Journal of Civil Engineering Pub Date : 2021-04-02 DOI:10.1080/14488353.2021.1906831
Nima Mehrabi, H. Khabbaz
{"title":"使用石柱的高铁过渡区","authors":"Nima Mehrabi, H. Khabbaz","doi":"10.1080/14488353.2021.1906831","DOIUrl":null,"url":null,"abstract":"ABSTRACT The high-speed railway projects have encountered several geotechnical challenges. One of the most important challenges is the differential settlement control in transition zones. Cement-treated soil is a common method to prevent the differential settlement at transition zones. An alternative method uses stone columns for controlling the differential settlement in approaching embankment of bridges. In this study, numerical modelling using PLAXIS 2D is selected for the assessment of stone columns in the reduction of total and differential settlements. One of the overpass bridges of the track constructed for the Tehran–Isfahan railway, the first high-speed railway in the country, is chosen as the case study. Three models are created based on the properties of the selected case study. The first one is a typical approaching embankment. The second one is the bridge abutment section, and the last one is a typical reinforced approaching embankment with stone columns.","PeriodicalId":44354,"journal":{"name":"Australian Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14488353.2021.1906831","citationCount":"0","resultStr":"{\"title\":\"A trustful transition zone for high-speed rail using stone columns\",\"authors\":\"Nima Mehrabi, H. Khabbaz\",\"doi\":\"10.1080/14488353.2021.1906831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The high-speed railway projects have encountered several geotechnical challenges. One of the most important challenges is the differential settlement control in transition zones. Cement-treated soil is a common method to prevent the differential settlement at transition zones. An alternative method uses stone columns for controlling the differential settlement in approaching embankment of bridges. In this study, numerical modelling using PLAXIS 2D is selected for the assessment of stone columns in the reduction of total and differential settlements. One of the overpass bridges of the track constructed for the Tehran–Isfahan railway, the first high-speed railway in the country, is chosen as the case study. Three models are created based on the properties of the selected case study. The first one is a typical approaching embankment. The second one is the bridge abutment section, and the last one is a typical reinforced approaching embankment with stone columns.\",\"PeriodicalId\":44354,\"journal\":{\"name\":\"Australian Journal of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14488353.2021.1906831\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14488353.2021.1906831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14488353.2021.1906831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

高速铁路工程遇到了一些岩土工程方面的挑战。其中最重要的挑战之一是过渡带的差异沉降控制。水泥土是防止过渡带不均匀沉降的常用方法。另一种方法是用石柱来控制桥梁接近路堤时的差沉降。在本研究中,选择PLAXIS 2D数值模拟来评估石柱在减少总沉降和差异沉降方面的作用。本文选取了国内第一条高速铁路——德黑兰-伊斯法罕铁路的立交桥之一作为案例研究。根据所选案例研究的属性创建三个模型。第一个是典型的靠近堤防。第二段为桥台段,最后一段为典型的石柱加筋接近路堤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A trustful transition zone for high-speed rail using stone columns
ABSTRACT The high-speed railway projects have encountered several geotechnical challenges. One of the most important challenges is the differential settlement control in transition zones. Cement-treated soil is a common method to prevent the differential settlement at transition zones. An alternative method uses stone columns for controlling the differential settlement in approaching embankment of bridges. In this study, numerical modelling using PLAXIS 2D is selected for the assessment of stone columns in the reduction of total and differential settlements. One of the overpass bridges of the track constructed for the Tehran–Isfahan railway, the first high-speed railway in the country, is chosen as the case study. Three models are created based on the properties of the selected case study. The first one is a typical approaching embankment. The second one is the bridge abutment section, and the last one is a typical reinforced approaching embankment with stone columns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
7.70%
发文量
31
期刊最新文献
Degradation of RC short beams under monotonic and repeated loads after cryogenic freeze-thaw cycles Mechanical properties of on-site manufactured stabilised compressed earth blocks: an experimental investigation and proposed models Microcosmic mechanism of asphalt-aggregate interface adhesion failure under freeze-thaw cycles based on molecular dynamics Microcosmic mechanism of PE modified asphalt based on molecular simulation Study on the interlayer critical response of asphalt pavement with different paving methods based on cohesive zone model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1