{"title":"自主车辆轨迹跟踪鲁棒控制器设计","authors":"Li Xueyun, Li Shuang, Zhang Ju","doi":"10.1504/ijvp.2020.10033774","DOIUrl":null,"url":null,"abstract":"In order to improve the stability and fault tolerance of the control system of the autonomous vehicle in the middle and low speed lane changing, a dual loop weighted trajectory tracking robust control system is designed. Firstly, the lateral displacement transfer function and yaw angle transfer function are derived by combining the mathematical model of trajectory planning and vehicle motion, and the proportion integral differential (PID) control parameters are calculated by mathematical derivation and transfer function reduction. Then, the influence of weighting coefficient on system stability and its determination method are studied by simulation. The results show that the dual-loop weighted control is feasible and effective, and it could provide a good fault tolerance, good control ability, good tracking effect, and small lateral displacement error and yaw angular velocity error for lane changing conditions in the medium and low speed.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust controller design for trajectory tracking of autonomous vehicle\",\"authors\":\"Li Xueyun, Li Shuang, Zhang Ju\",\"doi\":\"10.1504/ijvp.2020.10033774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the stability and fault tolerance of the control system of the autonomous vehicle in the middle and low speed lane changing, a dual loop weighted trajectory tracking robust control system is designed. Firstly, the lateral displacement transfer function and yaw angle transfer function are derived by combining the mathematical model of trajectory planning and vehicle motion, and the proportion integral differential (PID) control parameters are calculated by mathematical derivation and transfer function reduction. Then, the influence of weighting coefficient on system stability and its determination method are studied by simulation. The results show that the dual-loop weighted control is feasible and effective, and it could provide a good fault tolerance, good control ability, good tracking effect, and small lateral displacement error and yaw angular velocity error for lane changing conditions in the medium and low speed.\",\"PeriodicalId\":52169,\"journal\":{\"name\":\"International Journal of Vehicle Performance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvp.2020.10033774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvp.2020.10033774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Robust controller design for trajectory tracking of autonomous vehicle
In order to improve the stability and fault tolerance of the control system of the autonomous vehicle in the middle and low speed lane changing, a dual loop weighted trajectory tracking robust control system is designed. Firstly, the lateral displacement transfer function and yaw angle transfer function are derived by combining the mathematical model of trajectory planning and vehicle motion, and the proportion integral differential (PID) control parameters are calculated by mathematical derivation and transfer function reduction. Then, the influence of weighting coefficient on system stability and its determination method are studied by simulation. The results show that the dual-loop weighted control is feasible and effective, and it could provide a good fault tolerance, good control ability, good tracking effect, and small lateral displacement error and yaw angular velocity error for lane changing conditions in the medium and low speed.