求助PDF
{"title":"最大边连通实现和Kundu的k$ k$因子定理","authors":"James M. Shook","doi":"10.1002/jgt.23017","DOIUrl":null,"url":null,"abstract":"<p>A simple graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with edge-connectivity <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\lambda (G)$</annotation>\n </semantics></math> and minimum degree <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\delta (G)$</annotation>\n </semantics></math> is maximally edge-connected if <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\lambda (G)=\\delta (G)$</annotation>\n </semantics></math>. In 1964, given a nonincreasing degree sequence <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n \n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\pi =({d}_{1},{\\rm{\\ldots }},{d}_{n})$</annotation>\n </semantics></math>, Jack Edmonds showed that there is a realization <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> that is <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-edge-connected if and only if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> ${d}_{n}\\ge k$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>n</mi>\n </msubsup>\n \n <msub>\n <mi>d</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\sum }_{i=1}^{n}{d}_{i}\\ge 2(n-1)$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> ${d}_{n}=1$</annotation>\n </semantics></math>. We strengthen Edmonds's result by showing that given a realization <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${Z}_{0}$</annotation>\n </semantics></math> is a spanning subgraph of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\delta ({Z}_{0})\\ge 1$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>≥</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $| E({Z}_{0})| \\ge n-1$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\delta ({G}_{0})=1$</annotation>\n </semantics></math>, then there is a maximally edge-connected realization of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${G}_{0}-E({Z}_{0})$</annotation>\n </semantics></math> as a subgraph. Our theorem tells us that there is a maximally edge-connected realization of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> that differs from <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> by at most <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $n-1$</annotation>\n </semantics></math> edges. For <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $\\delta ({G}_{0})\\ge 2$</annotation>\n </semantics></math>, if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> has a spanning forest with <math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> components, then our theorem says there is a maximally edge-connected realization that differs from <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> by at most <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>c</mi>\n </mrow>\n <annotation> $n-c$</annotation>\n </semantics></math> edges. As an application we combine our work with Kundu's <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-factor theorem to show there is a maximally edge-connected realization with a <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>k</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>k</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $({k}_{1},{\\rm{\\ldots }},{k}_{n})$</annotation>\n </semantics></math>-factor for <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≤</mo>\n \n <msub>\n <mi>k</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $k\\le {k}_{i}\\le k+1$</annotation>\n </semantics></math> and present a partial result to a conjecture that strengthens the regular case of Kundu's <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-factor theorem.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"105 1","pages":"83-97"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximally edge-connected realizations and Kundu's \\n \\n \\n k\\n \\n $k$\\n -factor theorem\",\"authors\":\"James M. Shook\",\"doi\":\"10.1002/jgt.23017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A simple graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with edge-connectivity <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\lambda (G)$</annotation>\\n </semantics></math> and minimum degree <math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\delta (G)$</annotation>\\n </semantics></math> is maximally edge-connected if <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\lambda (G)=\\\\delta (G)$</annotation>\\n </semantics></math>. In 1964, given a nonincreasing degree sequence <math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n \\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\pi =({d}_{1},{\\\\rm{\\\\ldots }},{d}_{n})$</annotation>\\n </semantics></math>, Jack Edmonds showed that there is a realization <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n </mrow>\\n <annotation> $\\\\pi $</annotation>\\n </semantics></math> that is <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-edge-connected if and only if <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>≥</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n <annotation> ${d}_{n}\\\\ge k$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mo>∑</mo>\\n <mrow>\\n <mi>i</mi>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mi>n</mi>\\n </msubsup>\\n \\n <msub>\\n <mi>d</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\sum }_{i=1}^{n}{d}_{i}\\\\ge 2(n-1)$</annotation>\\n </semantics></math> when <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> ${d}_{n}=1$</annotation>\\n </semantics></math>. We strengthen Edmonds's result by showing that given a realization <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${G}_{0}$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n </mrow>\\n <annotation> $\\\\pi $</annotation>\\n </semantics></math> if <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${Z}_{0}$</annotation>\\n </semantics></math> is a spanning subgraph of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${G}_{0}$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>Z</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $\\\\delta ({Z}_{0})\\\\ge 1$</annotation>\\n </semantics></math> such that <math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>Z</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>≥</mo>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $| E({Z}_{0})| \\\\ge n-1$</annotation>\\n </semantics></math> when <math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $\\\\delta ({G}_{0})=1$</annotation>\\n </semantics></math>, then there is a maximally edge-connected realization of <math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n </mrow>\\n <annotation> $\\\\pi $</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>Z</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${G}_{0}-E({Z}_{0})$</annotation>\\n </semantics></math> as a subgraph. Our theorem tells us that there is a maximally edge-connected realization of <math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n </mrow>\\n <annotation> $\\\\pi $</annotation>\\n </semantics></math> that differs from <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${G}_{0}$</annotation>\\n </semantics></math> by at most <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $n-1$</annotation>\\n </semantics></math> edges. For <math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $\\\\delta ({G}_{0})\\\\ge 2$</annotation>\\n </semantics></math>, if <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${G}_{0}$</annotation>\\n </semantics></math> has a spanning forest with <math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation> $c$</annotation>\\n </semantics></math> components, then our theorem says there is a maximally edge-connected realization that differs from <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${G}_{0}$</annotation>\\n </semantics></math> by at most <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mi>c</mi>\\n </mrow>\\n <annotation> $n-c$</annotation>\\n </semantics></math> edges. As an application we combine our work with Kundu's <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-factor theorem to show there is a maximally edge-connected realization with a <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <msub>\\n <mi>k</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>k</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $({k}_{1},{\\\\rm{\\\\ldots }},{k}_{n})$</annotation>\\n </semantics></math>-factor for <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>k</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $k\\\\le {k}_{i}\\\\le k+1$</annotation>\\n </semantics></math> and present a partial result to a conjecture that strengthens the regular case of Kundu's <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-factor theorem.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"105 1\",\"pages\":\"83-97\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23017\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23017","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
引用
批量引用