红虾纳米碳化羟基磷灰石(CHAp)的合成与表征

N. Ngatijo, R. Bemis, Heriyanti Heriyanti, R. Rahmi, Nashihul Ulwan, R. Basuki
{"title":"红虾纳米碳化羟基磷灰石(CHAp)的合成与表征","authors":"N. Ngatijo, R. Bemis, Heriyanti Heriyanti, R. Rahmi, Nashihul Ulwan, R. Basuki","doi":"10.15408/jkv.v7i2.21359","DOIUrl":null,"url":null,"abstract":"Carbonated calcium hydroxyapatite (CHAp) exhibits excellent biocompatibility with bone and teeth, making it an ideal candidate for orthopedic and dental application. However, the study of CHAp synthesis from natural material is still scarce. The purpose of this research is to synthesize and characterize of CHAp, using Rebon shrimp (Acetes erythraeus) as a calcium source. The synthesis was conducted by hydrothermal method with the variation of Ca/P ratios 1.61; 1.67; 1.73. The as-prepared CHAp was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive X-ray (SEM-EDX). The FT-IR results show that synthesized material exhibited characteristic CHAp band of hydroxide at 3448 and 1635 cm-1, carbonate at 872 and 1427 cm-1, and phosphate at 1049; 606; and 570 cm-1. The diffractogram pattern assigned the all observed peak of CHAp are in good agreement compared to CHAp database with the nano-scale size. It also observed that the high Ca/P ratio will decrease the crystallinity of CHAp. The as-prepared CHAp micrograph is agglomerates spherical form with size between 5-20 nm which build up from 18–26 nm crystallite particles. The result of this research confirmed that Rebon shrimp is the promising materials for calcium source in CHAp production.","PeriodicalId":17786,"journal":{"name":"Jurnal Kimia Valensi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Nano-sized Carbonated Calcium Hydroxyapatite (CHAp) from Rebon shrimp (Acetes erythraeus) as a Candidate for Dental Restoring Application\",\"authors\":\"N. Ngatijo, R. Bemis, Heriyanti Heriyanti, R. Rahmi, Nashihul Ulwan, R. Basuki\",\"doi\":\"10.15408/jkv.v7i2.21359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbonated calcium hydroxyapatite (CHAp) exhibits excellent biocompatibility with bone and teeth, making it an ideal candidate for orthopedic and dental application. However, the study of CHAp synthesis from natural material is still scarce. The purpose of this research is to synthesize and characterize of CHAp, using Rebon shrimp (Acetes erythraeus) as a calcium source. The synthesis was conducted by hydrothermal method with the variation of Ca/P ratios 1.61; 1.67; 1.73. The as-prepared CHAp was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive X-ray (SEM-EDX). The FT-IR results show that synthesized material exhibited characteristic CHAp band of hydroxide at 3448 and 1635 cm-1, carbonate at 872 and 1427 cm-1, and phosphate at 1049; 606; and 570 cm-1. The diffractogram pattern assigned the all observed peak of CHAp are in good agreement compared to CHAp database with the nano-scale size. It also observed that the high Ca/P ratio will decrease the crystallinity of CHAp. The as-prepared CHAp micrograph is agglomerates spherical form with size between 5-20 nm which build up from 18–26 nm crystallite particles. The result of this research confirmed that Rebon shrimp is the promising materials for calcium source in CHAp production.\",\"PeriodicalId\":17786,\"journal\":{\"name\":\"Jurnal Kimia Valensi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kimia Valensi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15408/jkv.v7i2.21359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Valensi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jkv.v7i2.21359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碳化羟基磷灰石钙(CHAp)具有良好的骨和牙齿生物相容性,是骨科和牙科应用的理想候选者。然而,从天然材料合成CHAp的研究仍然很少。本研究的目的是利用红虾(Acetes erythraeus)作为钙源,合成并表征CHAp。采用水热法合成,Ca/P比值变化为1.61;1.67;1.73. 利用傅里叶变换红外光谱(FT-IR)、x射线衍射(XRD)和扫描电镜-能量色散x射线(SEM-EDX)对制备的CHAp进行了表征。FT-IR结果表明,合成材料在3448和1635 cm-1处表现为氢氧化物,872和1427 cm-1处为碳酸盐,1049处为磷酸盐;606;570cm -1。与具有纳米尺度尺寸的CHAp数据库相比,分配给所有观察到的CHAp峰的衍射图模式具有很好的一致性。高Ca/P比会降低CHAp的结晶度。制备的CHAp显微照片是由18-26 nm的结晶颗粒形成的球状结块,大小在5-20 nm之间。本研究结果证实了雷渤虾是一种很有前途的钙源材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Characterization of Nano-sized Carbonated Calcium Hydroxyapatite (CHAp) from Rebon shrimp (Acetes erythraeus) as a Candidate for Dental Restoring Application
Carbonated calcium hydroxyapatite (CHAp) exhibits excellent biocompatibility with bone and teeth, making it an ideal candidate for orthopedic and dental application. However, the study of CHAp synthesis from natural material is still scarce. The purpose of this research is to synthesize and characterize of CHAp, using Rebon shrimp (Acetes erythraeus) as a calcium source. The synthesis was conducted by hydrothermal method with the variation of Ca/P ratios 1.61; 1.67; 1.73. The as-prepared CHAp was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive X-ray (SEM-EDX). The FT-IR results show that synthesized material exhibited characteristic CHAp band of hydroxide at 3448 and 1635 cm-1, carbonate at 872 and 1427 cm-1, and phosphate at 1049; 606; and 570 cm-1. The diffractogram pattern assigned the all observed peak of CHAp are in good agreement compared to CHAp database with the nano-scale size. It also observed that the high Ca/P ratio will decrease the crystallinity of CHAp. The as-prepared CHAp micrograph is agglomerates spherical form with size between 5-20 nm which build up from 18–26 nm crystallite particles. The result of this research confirmed that Rebon shrimp is the promising materials for calcium source in CHAp production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
15
审稿时长
24 weeks
期刊最新文献
The Potential Effect of Honey-derived D-Allulose in Counteracting Hyperglycemia by Time and Dose Dependent Manner in Diabetes Mellitus Synthesis and Cytotoxic Evaluation of 3-Dimethyl Carbamoyl Emodin Green Metrics Evaluation on The Cannizzaro Reaction of p-Anisaldehyde and Benzaldehyde Under Solvent-Free Conditions Exploration The Candidates of Xenobiotic Degrading Indigenous Bacteria from Probolinggo City Landfill by Using Next Generation Sequencing (NGS) Sesquiterpenoids from the stem bark of Aglaia pachyphylla Miq (Meliaceae) and cytotoxic activity against MCF-7 Cancer Cell Line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1