基于拓扑优化的当代头公创新设计方案

Cheng Bi Duan, Su Yi Shen, Ding Wen Bao, Xin Yan
{"title":"基于拓扑优化的当代头公创新设计方案","authors":"Cheng Bi Duan,&nbsp;Su Yi Shen,&nbsp;Ding Wen Bao,&nbsp;Xin Yan","doi":"10.1007/s44223-023-00028-x","DOIUrl":null,"url":null,"abstract":"<div><p>Tou-Kung, which is pronounced in Chinese and known as Bracket Set (Liang &amp; Fairbank, A pictorial history of Chinese architecture, 1984), is a vital support component in the Chinese traditional wooden tectonic systems. It is located between the column and the beam and connects the eave and pillar, making the heavy roof extend out of the eaves longer. The development of Tou-Kung is entirely a microcosm of the development of ancient Chinese architecture; the aesthetic structure and Asian artistic temperament behind Tou-Kung make it gradually become the cultural and spiritual symbol of traditional Chinese architecture. In the contemporary era, inheriting and developing Tou-Kung has become an essential issue. Several architects have attempted to employ new materials and techniques to integrate the traditional Tou-Kung into modern architectural systems, such as the China Pavilion at the 2010 World Expo and Yusuhara Wooden Bridge Museum. This paper introduces the topological optimisation method bi-directional evolutionary structural optimisation (BESO) for form-finding. BESO method is one of the most popular topology optimisation methods widely employed in civil engineering and architecture. Through analyzing the development trend of Tou-Kung and mechanical structure, the authors integrate 2D and 3D optimisation methods and apply the hybrid methods to form-finding. Meanwhile, mortise and tenon joint used to create stable connections with components of Tou-Kung are retained. This research aims to design a new Tou-Kung corresponding to “structural performance-based aesthetics”. The workflow proposed in this paper is valuable for Architrave and other traditional building components.</p></div>","PeriodicalId":72270,"journal":{"name":"Architectural intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44223-023-00028-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Innovative design solutions for contemporary Tou-Kung based on topological optimisation\",\"authors\":\"Cheng Bi Duan,&nbsp;Su Yi Shen,&nbsp;Ding Wen Bao,&nbsp;Xin Yan\",\"doi\":\"10.1007/s44223-023-00028-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tou-Kung, which is pronounced in Chinese and known as Bracket Set (Liang &amp; Fairbank, A pictorial history of Chinese architecture, 1984), is a vital support component in the Chinese traditional wooden tectonic systems. It is located between the column and the beam and connects the eave and pillar, making the heavy roof extend out of the eaves longer. The development of Tou-Kung is entirely a microcosm of the development of ancient Chinese architecture; the aesthetic structure and Asian artistic temperament behind Tou-Kung make it gradually become the cultural and spiritual symbol of traditional Chinese architecture. In the contemporary era, inheriting and developing Tou-Kung has become an essential issue. Several architects have attempted to employ new materials and techniques to integrate the traditional Tou-Kung into modern architectural systems, such as the China Pavilion at the 2010 World Expo and Yusuhara Wooden Bridge Museum. This paper introduces the topological optimisation method bi-directional evolutionary structural optimisation (BESO) for form-finding. BESO method is one of the most popular topology optimisation methods widely employed in civil engineering and architecture. Through analyzing the development trend of Tou-Kung and mechanical structure, the authors integrate 2D and 3D optimisation methods and apply the hybrid methods to form-finding. Meanwhile, mortise and tenon joint used to create stable connections with components of Tou-Kung are retained. This research aims to design a new Tou-Kung corresponding to “structural performance-based aesthetics”. The workflow proposed in this paper is valuable for Architrave and other traditional building components.</p></div>\",\"PeriodicalId\":72270,\"journal\":{\"name\":\"Architectural intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44223-023-00028-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architectural intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44223-023-00028-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architectural intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44223-023-00028-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

头拱(Tou-Kung)在汉语中发音为 "托架"(Liang & Fairbank, A pictorial history of Chinese architecture, 1984),是中国传统木结构体系中的重要支撑部件。它位于柱与梁之间,连接着檐与柱,使厚重的屋顶从屋檐中伸出更长的时间。头拱的发展完全是中国古代建筑发展的一个缩影,头拱背后的美学结构和亚洲艺术气质使其逐渐成为中国传统建筑的文化和精神象征。在当代,继承和发展 "头宫 "已成为一个至关重要的问题。一些建筑师尝试采用新材料和新技术,将传统的 "头拱 "融入现代建筑体系,如 2010 年世博会中国馆和汤原木桥博物馆。本文介绍了拓扑优化方法--双向进化结构优化法(BESO),用于寻找形体。BESO 方法是土木工程和建筑领域最常用的拓扑优化方法之一。作者通过分析榫卯结构和机械结构的发展趋势,整合了二维和三维优化方法,并将混合方法应用于找形。同时,保留了榫卯结构与 "沓宫 "构件的稳定连接。这项研究旨在设计一种符合 "基于结构性能的美学 "的新型榫卯结构。本文提出的工作流程对建筑幕墙和其他传统建筑构件很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative design solutions for contemporary Tou-Kung based on topological optimisation

Tou-Kung, which is pronounced in Chinese and known as Bracket Set (Liang & Fairbank, A pictorial history of Chinese architecture, 1984), is a vital support component in the Chinese traditional wooden tectonic systems. It is located between the column and the beam and connects the eave and pillar, making the heavy roof extend out of the eaves longer. The development of Tou-Kung is entirely a microcosm of the development of ancient Chinese architecture; the aesthetic structure and Asian artistic temperament behind Tou-Kung make it gradually become the cultural and spiritual symbol of traditional Chinese architecture. In the contemporary era, inheriting and developing Tou-Kung has become an essential issue. Several architects have attempted to employ new materials and techniques to integrate the traditional Tou-Kung into modern architectural systems, such as the China Pavilion at the 2010 World Expo and Yusuhara Wooden Bridge Museum. This paper introduces the topological optimisation method bi-directional evolutionary structural optimisation (BESO) for form-finding. BESO method is one of the most popular topology optimisation methods widely employed in civil engineering and architecture. Through analyzing the development trend of Tou-Kung and mechanical structure, the authors integrate 2D and 3D optimisation methods and apply the hybrid methods to form-finding. Meanwhile, mortise and tenon joint used to create stable connections with components of Tou-Kung are retained. This research aims to design a new Tou-Kung corresponding to “structural performance-based aesthetics”. The workflow proposed in this paper is valuable for Architrave and other traditional building components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A review on the mathematical models of thermostatically controlled load The PreDI matrix-a common terminology for offsite construction: definition, verification, and demonstration in environmental impact studies Making the Hypar Up pavilion: (in)efficiencies of upcycling surplus timber products Phygital intelligence Emerging technologies in urban design pedagogy: augmented reality applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1