{"title":"肠道菌群及其与坏死性小肠结肠炎发生关系的研究进展","authors":"Michel Hosny, Nadim Cassir, Bernard La Scola","doi":"10.1016/j.humic.2016.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Necrotizing enterocolitis (NEC) remains a leading cause of morbidity and mortality, affecting primarily preterm neonates. The pathogenesis of this intestinal disease appears to be linked to the disruption or delay of bacterial colonization, termed gut dysbiosis. Intestinal immaturity, antibiotic use and hospital microbial environment are the main triggers of this pathological process. Conversely, gut symbiosis is made possible by the presence of beneficial and commensal bacterial species that protect the immature gut from opportunistic pathogens overgrowth and inflammation. Herein, we review the relationships between gut microbiota and NEC in preterm neonates. We also discuss the role of specific microorganisms belonging to the commensal microbiota, highlighting the possibility for a toxigenic mechanism involved in NEC pathogenesis. We conclude on the importance of interventions aimed at providing or restoring beneficial bacteria populations, in view to efficiently preventing or treating NEC.</p></div>","PeriodicalId":37790,"journal":{"name":"Human Microbiome Journal","volume":"4 ","pages":"Pages 14-19"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.humic.2016.09.002","citationCount":"18","resultStr":"{\"title\":\"Updating on gut microbiota and its relationship with the occurrence of necrotizing enterocolitis\",\"authors\":\"Michel Hosny, Nadim Cassir, Bernard La Scola\",\"doi\":\"10.1016/j.humic.2016.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Necrotizing enterocolitis (NEC) remains a leading cause of morbidity and mortality, affecting primarily preterm neonates. The pathogenesis of this intestinal disease appears to be linked to the disruption or delay of bacterial colonization, termed gut dysbiosis. Intestinal immaturity, antibiotic use and hospital microbial environment are the main triggers of this pathological process. Conversely, gut symbiosis is made possible by the presence of beneficial and commensal bacterial species that protect the immature gut from opportunistic pathogens overgrowth and inflammation. Herein, we review the relationships between gut microbiota and NEC in preterm neonates. We also discuss the role of specific microorganisms belonging to the commensal microbiota, highlighting the possibility for a toxigenic mechanism involved in NEC pathogenesis. We conclude on the importance of interventions aimed at providing or restoring beneficial bacteria populations, in view to efficiently preventing or treating NEC.</p></div>\",\"PeriodicalId\":37790,\"journal\":{\"name\":\"Human Microbiome Journal\",\"volume\":\"4 \",\"pages\":\"Pages 14-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.humic.2016.09.002\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Microbiome Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452231716300136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Microbiome Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452231716300136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Updating on gut microbiota and its relationship with the occurrence of necrotizing enterocolitis
Necrotizing enterocolitis (NEC) remains a leading cause of morbidity and mortality, affecting primarily preterm neonates. The pathogenesis of this intestinal disease appears to be linked to the disruption or delay of bacterial colonization, termed gut dysbiosis. Intestinal immaturity, antibiotic use and hospital microbial environment are the main triggers of this pathological process. Conversely, gut symbiosis is made possible by the presence of beneficial and commensal bacterial species that protect the immature gut from opportunistic pathogens overgrowth and inflammation. Herein, we review the relationships between gut microbiota and NEC in preterm neonates. We also discuss the role of specific microorganisms belonging to the commensal microbiota, highlighting the possibility for a toxigenic mechanism involved in NEC pathogenesis. We conclude on the importance of interventions aimed at providing or restoring beneficial bacteria populations, in view to efficiently preventing or treating NEC.
期刊介绍:
The innumerable microbes living in and on our bodies are known to affect human wellbeing, but our knowledge of their role is still at the very early stages of understanding. Human Microbiome is a new open access journal dedicated to research on the impact of the microbiome on human health and disease. The journal will publish original research, reviews, comments, human microbe descriptions and genome, and letters. Topics covered will include: the repertoire of human-associated microbes, therapeutic intervention, pathophysiology, experimental models, physiological, geographical, and pathological changes, and technical reports; genomic, metabolomic, transcriptomic, and culturomic approaches are welcome.