{"title":"介观系统中的非弹性热电输运和涨落","authors":"Rongqian Wang, Chen Wang, Jincheng Lu, Jian‐Hua Jiang","doi":"10.1080/23746149.2022.2082317","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the past decade, a new research frontier emerges at the interface between physics and renewable energy, termed as inelastic thermoelectric effects, where inelastic transport processes play a key role. The study of inelastic thermoelectric effects broadens our understanding of thermoelectric phenomena and provides new routes towards high-performance thermoelectric energy conversion. Here, we review the main progress in this field, with a particular focus on inelastic thermoelectric effects induced by the electron-phonon and electron–photon interactions. We introduce the motivations, the basic pictures, and prototype models, as well as the unconventional effects induced by inelastic thermoelectric transport. These unconventional effects include the separation of heat and charge transport, the cooling by heating effect, the linear thermal transistor effect, nonlinear enhancement of performance, Maxwell demons, and cooperative effects. We find that elastic and inelastic thermoelectric effects are described by significantly different microscopic mechanisms and belong to distinct linear thermodynamic classes. We also pay special attention to the unique aspect of fluctuations in small mesoscopic thermoelectric systems. Finally, we discuss the challenges and future opportunities in the field of inelastic thermoelectrics. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Inelastic thermoelectric transport and fluctuations in mesoscopic systems\",\"authors\":\"Rongqian Wang, Chen Wang, Jincheng Lu, Jian‐Hua Jiang\",\"doi\":\"10.1080/23746149.2022.2082317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the past decade, a new research frontier emerges at the interface between physics and renewable energy, termed as inelastic thermoelectric effects, where inelastic transport processes play a key role. The study of inelastic thermoelectric effects broadens our understanding of thermoelectric phenomena and provides new routes towards high-performance thermoelectric energy conversion. Here, we review the main progress in this field, with a particular focus on inelastic thermoelectric effects induced by the electron-phonon and electron–photon interactions. We introduce the motivations, the basic pictures, and prototype models, as well as the unconventional effects induced by inelastic thermoelectric transport. These unconventional effects include the separation of heat and charge transport, the cooling by heating effect, the linear thermal transistor effect, nonlinear enhancement of performance, Maxwell demons, and cooperative effects. We find that elastic and inelastic thermoelectric effects are described by significantly different microscopic mechanisms and belong to distinct linear thermodynamic classes. We also pay special attention to the unique aspect of fluctuations in small mesoscopic thermoelectric systems. Finally, we discuss the challenges and future opportunities in the field of inelastic thermoelectrics. Graphical Abstract\",\"PeriodicalId\":7374,\"journal\":{\"name\":\"Advances in Physics: X\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics: X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/23746149.2022.2082317\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2022.2082317","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Inelastic thermoelectric transport and fluctuations in mesoscopic systems
ABSTRACT In the past decade, a new research frontier emerges at the interface between physics and renewable energy, termed as inelastic thermoelectric effects, where inelastic transport processes play a key role. The study of inelastic thermoelectric effects broadens our understanding of thermoelectric phenomena and provides new routes towards high-performance thermoelectric energy conversion. Here, we review the main progress in this field, with a particular focus on inelastic thermoelectric effects induced by the electron-phonon and electron–photon interactions. We introduce the motivations, the basic pictures, and prototype models, as well as the unconventional effects induced by inelastic thermoelectric transport. These unconventional effects include the separation of heat and charge transport, the cooling by heating effect, the linear thermal transistor effect, nonlinear enhancement of performance, Maxwell demons, and cooperative effects. We find that elastic and inelastic thermoelectric effects are described by significantly different microscopic mechanisms and belong to distinct linear thermodynamic classes. We also pay special attention to the unique aspect of fluctuations in small mesoscopic thermoelectric systems. Finally, we discuss the challenges and future opportunities in the field of inelastic thermoelectrics. Graphical Abstract
期刊介绍:
Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including:
Chemistry
Materials Science
Engineering
Biology
Medicine