O. Burdo, S. Terziev, A. Burdo, I. Sirotyuk, E.A. Pylypenko, A. Akimov, M.Yu. Molchanov
{"title":"植物原料脱水过程的能量学和动力学","authors":"O. Burdo, S. Terziev, A. Burdo, I. Sirotyuk, E.A. Pylypenko, A. Akimov, M.Yu. Molchanov","doi":"10.52254/1857-0070.2022.3-55.9","DOIUrl":null,"url":null,"abstract":"The aim of this work is the energy-efficient equipment creation for production of a highquality dry product from a plant raw material and development of scientific and engineering foundation for the design of such an equipment. The achievement of this aim lies in a deep analysis of tendency in the development of a drying theory and technique. The graph is presented, on the basis of which the development of heat and moisture transfer model of A.V. Lykov is given, taking into account the P. A. Rebinder moisture bond forms specificity. The problems of convective drying modern technologies are determined; the reasons of high-energy consumption during their work are substantiated. The electrodynamic dehydrators classification is given, which consideres the combined simple modes (drying) and hybrid dehydration modes. On the basis of the first law of thermodynamics, the possibility of a significant decrease in energy consumption is shown by the organization of a “vapordynamic” effect. The most significant result of the work is the construction of the electrodynamic apparatus module for dehydration of food and medicinal plant raw material. By the combination of electromagnetic field with the filtration process the specific energy consumptions were 1.9 MJ per 1 kg of the removed moisture, at the hybrid processes — juice yield exceeded vapor yield by 3.5 times. The significance of the work consists in the fact that the scientific conception of the authors on the possibilities of the significant decrease in energy consumption during the raw material dehydration at the innovative electrodynamic type apparatuses was practically proven.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energetics and Kinetics of Plant Raw Material Dehydration Processes\",\"authors\":\"O. Burdo, S. Terziev, A. Burdo, I. Sirotyuk, E.A. Pylypenko, A. Akimov, M.Yu. Molchanov\",\"doi\":\"10.52254/1857-0070.2022.3-55.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is the energy-efficient equipment creation for production of a highquality dry product from a plant raw material and development of scientific and engineering foundation for the design of such an equipment. The achievement of this aim lies in a deep analysis of tendency in the development of a drying theory and technique. The graph is presented, on the basis of which the development of heat and moisture transfer model of A.V. Lykov is given, taking into account the P. A. Rebinder moisture bond forms specificity. The problems of convective drying modern technologies are determined; the reasons of high-energy consumption during their work are substantiated. The electrodynamic dehydrators classification is given, which consideres the combined simple modes (drying) and hybrid dehydration modes. On the basis of the first law of thermodynamics, the possibility of a significant decrease in energy consumption is shown by the organization of a “vapordynamic” effect. The most significant result of the work is the construction of the electrodynamic apparatus module for dehydration of food and medicinal plant raw material. By the combination of electromagnetic field with the filtration process the specific energy consumptions were 1.9 MJ per 1 kg of the removed moisture, at the hybrid processes — juice yield exceeded vapor yield by 3.5 times. The significance of the work consists in the fact that the scientific conception of the authors on the possibilities of the significant decrease in energy consumption during the raw material dehydration at the innovative electrodynamic type apparatuses was practically proven.\",\"PeriodicalId\":41974,\"journal\":{\"name\":\"Problemele Energeticii Regionale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemele Energeticii Regionale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52254/1857-0070.2022.3-55.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemele Energeticii Regionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52254/1857-0070.2022.3-55.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Energetics and Kinetics of Plant Raw Material Dehydration Processes
The aim of this work is the energy-efficient equipment creation for production of a highquality dry product from a plant raw material and development of scientific and engineering foundation for the design of such an equipment. The achievement of this aim lies in a deep analysis of tendency in the development of a drying theory and technique. The graph is presented, on the basis of which the development of heat and moisture transfer model of A.V. Lykov is given, taking into account the P. A. Rebinder moisture bond forms specificity. The problems of convective drying modern technologies are determined; the reasons of high-energy consumption during their work are substantiated. The electrodynamic dehydrators classification is given, which consideres the combined simple modes (drying) and hybrid dehydration modes. On the basis of the first law of thermodynamics, the possibility of a significant decrease in energy consumption is shown by the organization of a “vapordynamic” effect. The most significant result of the work is the construction of the electrodynamic apparatus module for dehydration of food and medicinal plant raw material. By the combination of electromagnetic field with the filtration process the specific energy consumptions were 1.9 MJ per 1 kg of the removed moisture, at the hybrid processes — juice yield exceeded vapor yield by 3.5 times. The significance of the work consists in the fact that the scientific conception of the authors on the possibilities of the significant decrease in energy consumption during the raw material dehydration at the innovative electrodynamic type apparatuses was practically proven.