A. Ancans, E. Petersons, R. Jerjomins, E. Grabs, G. Ancans, A. Ipatovs
{"title":"在汽车无线局域网IEEE 802.11ac通信网络的试验台上,根据到发射机的距离评估接收信号功率电平和吞吐量","authors":"A. Ancans, E. Petersons, R. Jerjomins, E. Grabs, G. Ancans, A. Ipatovs","doi":"10.2478/lpts-2022-0001","DOIUrl":null,"url":null,"abstract":"Abstract WLAN IEEE 802.11ac is one of the wireless network technologies that can be used for ITS (Intelligent Transport Systems) needs, in particular for providing vehicle passengers with access to the data transmission network. To evaluate the performance of such automotive wireless access networks, it is necessary to perform experimental measurements. By conducting the throughput measurements in WLAN-based automotive communications testbed, it has been observed that the throughput of the communication channel decreases and the received signal becomes weaker as the vehicle moves away from the wireless access point. The aim of the research is to verify theoretically whether there is a correlation between the received signal power level and the throughput of the communication channel depending on the distance to the transmitter. To calculate the received signal power depending on the distance to the transmitter, a log-normal signal propagation model can be used, which takes into account random signal fluctuations that are described by the Nakagami distribution. Further, based on the obtained results, Shannon’s theorem can be used to calculate the maximum theoretical throughput of the communication channel. The analysis of the obtained results shows that a correlation exists between the received signal power level and the throughput of the communication channel depending on the distance to the transmitter. The performed theoretical calculations justify the experimentally obtained results.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"59 1","pages":"3 - 12"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Received Signal Power Level and Throughput Depending on Distance to Transmitter in Testbed for Automotive WLAN IEEE 802.11ac Communication Network\",\"authors\":\"A. Ancans, E. Petersons, R. Jerjomins, E. Grabs, G. Ancans, A. Ipatovs\",\"doi\":\"10.2478/lpts-2022-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract WLAN IEEE 802.11ac is one of the wireless network technologies that can be used for ITS (Intelligent Transport Systems) needs, in particular for providing vehicle passengers with access to the data transmission network. To evaluate the performance of such automotive wireless access networks, it is necessary to perform experimental measurements. By conducting the throughput measurements in WLAN-based automotive communications testbed, it has been observed that the throughput of the communication channel decreases and the received signal becomes weaker as the vehicle moves away from the wireless access point. The aim of the research is to verify theoretically whether there is a correlation between the received signal power level and the throughput of the communication channel depending on the distance to the transmitter. To calculate the received signal power depending on the distance to the transmitter, a log-normal signal propagation model can be used, which takes into account random signal fluctuations that are described by the Nakagami distribution. Further, based on the obtained results, Shannon’s theorem can be used to calculate the maximum theoretical throughput of the communication channel. The analysis of the obtained results shows that a correlation exists between the received signal power level and the throughput of the communication channel depending on the distance to the transmitter. The performed theoretical calculations justify the experimentally obtained results.\",\"PeriodicalId\":43603,\"journal\":{\"name\":\"Latvian Journal of Physics and Technical Sciences\",\"volume\":\"59 1\",\"pages\":\"3 - 12\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latvian Journal of Physics and Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/lpts-2022-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Evaluation of Received Signal Power Level and Throughput Depending on Distance to Transmitter in Testbed for Automotive WLAN IEEE 802.11ac Communication Network
Abstract WLAN IEEE 802.11ac is one of the wireless network technologies that can be used for ITS (Intelligent Transport Systems) needs, in particular for providing vehicle passengers with access to the data transmission network. To evaluate the performance of such automotive wireless access networks, it is necessary to perform experimental measurements. By conducting the throughput measurements in WLAN-based automotive communications testbed, it has been observed that the throughput of the communication channel decreases and the received signal becomes weaker as the vehicle moves away from the wireless access point. The aim of the research is to verify theoretically whether there is a correlation between the received signal power level and the throughput of the communication channel depending on the distance to the transmitter. To calculate the received signal power depending on the distance to the transmitter, a log-normal signal propagation model can be used, which takes into account random signal fluctuations that are described by the Nakagami distribution. Further, based on the obtained results, Shannon’s theorem can be used to calculate the maximum theoretical throughput of the communication channel. The analysis of the obtained results shows that a correlation exists between the received signal power level and the throughput of the communication channel depending on the distance to the transmitter. The performed theoretical calculations justify the experimentally obtained results.
期刊介绍:
Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.