{"title":"求解对称旅行商问题的改进无序对蝙蝠算法","authors":"Zhang Nan, Zhimin Lv, Qiao Shen, Li Ting","doi":"10.2478/fcds-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract Bat algorithm is an effective swarm intelligence optimization algorithm which is widely used to solve continuous optimization problems. But it still has some limitations in search process and can’t solve discrete optimization problems directly. Therefore, this paper introduces an unordered pair and proposes an unordered pair bat algorithm (UPBA) to make it more suitable for solving symmetric discrete traveling salesman problems. To verify the effectiveness of this method, the algorithm has been tested on 23 symmetric benchmarks and compared its performance with other algorithms. The results have shown that the proposed UPBA outperforms all the other alternatives significantly in most cases.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"47 1","pages":"87 - 103"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Unordered Pair Bat Algorithm for Solving the Symmetrical Traveling Salesman Problem\",\"authors\":\"Zhang Nan, Zhimin Lv, Qiao Shen, Li Ting\",\"doi\":\"10.2478/fcds-2022-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bat algorithm is an effective swarm intelligence optimization algorithm which is widely used to solve continuous optimization problems. But it still has some limitations in search process and can’t solve discrete optimization problems directly. Therefore, this paper introduces an unordered pair and proposes an unordered pair bat algorithm (UPBA) to make it more suitable for solving symmetric discrete traveling salesman problems. To verify the effectiveness of this method, the algorithm has been tested on 23 symmetric benchmarks and compared its performance with other algorithms. The results have shown that the proposed UPBA outperforms all the other alternatives significantly in most cases.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\"47 1\",\"pages\":\"87 - 103\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2022-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An Improved Unordered Pair Bat Algorithm for Solving the Symmetrical Traveling Salesman Problem
Abstract Bat algorithm is an effective swarm intelligence optimization algorithm which is widely used to solve continuous optimization problems. But it still has some limitations in search process and can’t solve discrete optimization problems directly. Therefore, this paper introduces an unordered pair and proposes an unordered pair bat algorithm (UPBA) to make it more suitable for solving symmetric discrete traveling salesman problems. To verify the effectiveness of this method, the algorithm has been tested on 23 symmetric benchmarks and compared its performance with other algorithms. The results have shown that the proposed UPBA outperforms all the other alternatives significantly in most cases.