过采样的日志消息异常检测

Amir Farzad, T. Gulliver
{"title":"过采样的日志消息异常检测","authors":"Amir Farzad, T. Gulliver","doi":"10.5121/ijaia.2020.11405","DOIUrl":null,"url":null,"abstract":"Imbalanced data is a significant challenge in classification with machine learning algorithms. This is particularly important with log message data as negative logs are sparse so this data is typically imbalanced. In this paper, a model to generate text log messages is proposed which employs a SeqGAN network. An Autoencoder is used for feature extraction and anomaly detection is done using a GRU network. The proposed model is evaluated with three imbalanced log data sets, namely BGL, OpenStack, and Thunderbird. Results are presented which show that appropriate oversampling and data balancing improves anomaly detection accuracy.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/ijaia.2020.11405","citationCount":"6","resultStr":"{\"title\":\"Log Message Anomaly Detection with Oversampling\",\"authors\":\"Amir Farzad, T. Gulliver\",\"doi\":\"10.5121/ijaia.2020.11405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imbalanced data is a significant challenge in classification with machine learning algorithms. This is particularly important with log message data as negative logs are sparse so this data is typically imbalanced. In this paper, a model to generate text log messages is proposed which employs a SeqGAN network. An Autoencoder is used for feature extraction and anomaly detection is done using a GRU network. The proposed model is evaluated with three imbalanced log data sets, namely BGL, OpenStack, and Thunderbird. Results are presented which show that appropriate oversampling and data balancing improves anomaly detection accuracy.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5121/ijaia.2020.11405\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijaia.2020.11405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2020.11405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

不平衡数据是机器学习算法分类中的一个重大挑战。这对于日志消息数据尤其重要,因为负日志是稀疏的,因此这些数据通常是不平衡的。本文提出了一种利用SeqGAN网络生成文本日志消息的模型。自动编码器用于特征提取,异常检测使用GRU网络完成。使用三个不平衡的日志数据集,即BGL、OpenStack和Thunderbird,对所提出的模型进行了评估。结果表明,适当的过采样和数据平衡提高了异常检测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Log Message Anomaly Detection with Oversampling
Imbalanced data is a significant challenge in classification with machine learning algorithms. This is particularly important with log message data as negative logs are sparse so this data is typically imbalanced. In this paper, a model to generate text log messages is proposed which employs a SeqGAN network. An Autoencoder is used for feature extraction and anomaly detection is done using a GRU network. The proposed model is evaluated with three imbalanced log data sets, namely BGL, OpenStack, and Thunderbird. Results are presented which show that appropriate oversampling and data balancing improves anomaly detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1